Масса приборов дистанционного зондирования земли. Дистанционное зондирование Земли(ДЗЗ). Основные характеристики КА «Обзор-О»

Английский язык 22.10.2023
Английский язык

Лекция. Введение в ДЗ

Обработка и дешифрирование аэрокосмических изображений является актуальным и перспективным направлением научно-практической деятельности человечества. Происходит это потому, что оперативное получение материалов дистанционного зондирования Земли (ДЗЗ) из космоса позволяет решать целый круг весьма сложных и важных задач, находить ответы на многие интересующие вопросы. Эти вопросы охватывают практически все сферы повседневной жизни людей. К ним относятся, например, такие важные, как проблемы экологии и мониторинга окружающей среды, природопользование и эффективное управление земельными ресурсами, военное дело, борьба с терроризмом, картографирование и другие.

Обработка и дешифрирование аэрокосмических изображений являются неотъемлемой составляющей дистанционного зондирования (ДЗ). Дадим несколько наиболее известных определений ДЗ.

Дистанционное зондирование - получение и измерение данных о некоторых характеристиках явления, объекта или материала записывающим устройством, не находящимся в физическом, непосредственном контакте с объектом исследования; технические приемы, включающие в себя накопление знаний о свойствах окружения путем измерения силовых полей, электромагнитного излучения или акустической энергии с применением камер, лазеров, радиоприемников, радарных систем, сонаров, теплорегистрирующих устройств, сейсмографов, магнетометров, гравиметров, сцинтиллометров и других инструментальных средств.

Дистанционное зондирование – это технология, базирующаяся на распознавании электромагнитных и силовых полей с целью получения и интерпретации геопространственных данных для выявления информации о характерных особенностях, объектах и классах на Земной поверхности, в океанах и атмосфере, а также (если это возможно) на других космических объектах.

Дистанционное зондирование связано с регистрацией и измерением фотонов различной энергии, исходящих из удаленных материалов, с целью обеспечения возможности идентификации и категоризации по классу/типу, веществу и пространственному распределению.

Дистанционное зондирование – получение информации об объекте по данным измерений, сделанных на расстоянии от объекта, т. е. без прямого контакта с объектом.

Понятие ДЗ появилось в XIX веке вслед за изобретением фотографии.
В одной из первых областей, в которых стали применять этот метод, стала астрономия. Впоследствии, ДЗ начали использовать в военной области для сбора информации о противнике и принятия стратегических решений. Фактически ДЗ начало свой путь в 1840-х годах, когда пилоты воздушных шаров получили картинки земной поверхности, используя новейшее изобретение – фотокамеру.



4 октября 1957 года СССР осуществил вывод на орбиту первого искусственного спутника Земли – Спутник-1.

12 апреля 1961 года в 9 часов 7 минут по московскому времени с космодрома Байконур стартовал космический корабль “Восток” с пилотом-космонавтом Юрием Алексеевичем Гагариным на борту. Первый полет человека длился 108 минут – космонавт приземлился неподалеку от деревни Смеловки в Саратовской области.

Возможности ДЗ США в военной области были очень значительны и еще более возросли после 1960 года в результате запуска разведывательных спутников в рамках программ CORONA, ARGON и LANYARD

Первый метеорологический спутник был запущен в США 1 апреля 1960 года. Он использовался для прогноза погоды, наблюдения за перемещением циклонов и других подобных задач. Первым среди спутников, которые применялись для регулярной съемки больших участков земной поверхности, стал TIROS-1 (Television and Infrared Observation Satellite).

Первый специализированный спутник для целей ДЗ был запущен в 1972 году. Он назывался ERTS-1 (Earth Resources Technology Satellite) и использовался, в основном, для целей сельского хозяйства. В настоящее время спутники этой серии носят название Landsat. Они предназначены для регулярной многозональной съемки территорий со средним разрешением.

Дистанционное зондирование включает использование инструментов, или сенсоров, для «захвата» спектральных и пространственных отношений между объектами и материалами, наблюдаемыми с расстояния – обычно, находясь над ними. Как правило, мы обозреваем наш мир с более или менее горизонтальной точки зрения, поскольку живем на его поверхности. Но, при этих условиях, то, что мы видим, ограничено областью в несколько квадратных километров по причине наличия различных препятствий – зданий, деревьев, складок местности. Видимая нами область значительно увеличивается, если мы смотрим вниз, например, с высокого здания или вершины горы. Она увеличивается еще больше – до сотен квадратных километров, если мы бросаем взгляд вниз с авиалайнера, летящего на высоте 10 километров. С вертикальной или значительно возвышенной перспективы, наши впечатления о поверхности под нами заметно отличается от того, когда мы осматриваем окружающий мир, находясь в некоторой точке этой поверхности. В этом случае мы наблюдаем множество объектов и особенностей на поверхности такими, какими бы они выглядели на тематической карте в их действительных пространственных и контекстных взаимосвязях. Именно поэтому дистанционное зондирование очень часто осуществляется с платформ, таких как самолеты или космические аппараты, имеющих бортовые датчики, регистрирующие и анализирующие с высоты объекты и особенности территории на больших площадях. Это практичный, упорядоченный и эффективный в отношении цены путь получения и обновления информации об окружающем нас мире.

Далее приведён краткий список космических аппаратов, которые использовались, а некоторые и используются, для ДЗ земной поверхности, океанов и наблюдения за погодой. В скобках указан год запуска первого из спутников серии.

Группа 1 – в основном наблюдения земной поверхности:

Landsat (1973); Seasat (1978); HCMM (1978); SPOT (France) (1986);

RESURS (Russia) (1985); IRS (India) (1986); ERS (1991); JERS (Japan) (1992); Radarsat (Canada) (1995); ADEOS (Japan) (1996). Современные: WorldView, EO-1, QuickBird, OrbView, Сич-2, EgypetSat, Ikonos, Terra, TerraSAR-X, TanDEM-X и др.

Группа 2 – в основном метеорологические наблюдения:

TIROS (1960); Nimbus (1964); ESSA (1966); ATS (g) (1966);

Российские Kosmos (1968) и Meteor (1969); ITOS (1970); SMS (g) (1975);

NOAA (1-5) (1976); Meteosat (1978); NOAA (6-14) (1982);

Группа 3 – в основном океанографические наблюдения:

Seasat (1978); Nimbus 7 (1978) включал CZCS (Coastal Zone Color Scanner), который измерял концентрацию хлорофилла в морской воде; Topex-Poseidon (1992); SeaWiFS (1997). Современные: Океан-О, Terra, Aqua.

Этот очень небольшой (перечислены одни из самых известных) и постоянно пополняющийся список убеждает в том, что дистанционное зондирование стало широко используемым технологическим и научным инструментом, используемым для мониторинга планетных поверхностей и атмосферы. Расходы на наблюдение Земли и других планет, начиная с первых дней космических программ по настоящее время, превысили 150 миллиардов долларов. Большая часть этих денег была направлена на практические приложения, в основном фокусирующиеся на управлении природными ресурсами и окружающей средой.

На данный момент сложно найти передовую отрасль, направление деятельности людей, где не применялись технологии ДЗ. Рассмотрим кратко основные области применения данных ДЗ.

Сельское, лесное и охотничье хозяйство . В данной области данные ДЗ применяют для различения типов вегетации и их состояния, оценки площадей посевов, лесных и охотничьих угодий по типам культур, определяют состояние почв и площади выгоревших участков.

Картография и землепользование . При решении различных задач землепользования с использованием данных ДЗ важнейшими являются классификация, картографирование и обновление карт, категоризация земель, разделение урбанизированных и сельских районов, региональное планирование, картирование транспортных сетей, картирование границ вода‑суша.

Геология . Это одна из первых областей, при изучении которой активно использовалась съемка с воздушных шаров, самолетов и, впоследствии, с космических платформ. Наиболее часто данные ДЗ используют в этой области для различения типов пород, картирования больших геологических образований, обновления геологических карт и поиска указаний на определенные минералы.

Водные ресурсы . При исследовании водных ресурсов с использованием данных ДЗ чаще всего специалисты определяют границы водных объектов, их площади и объемы, исследуют мутность и турбулентность, проводят картирование областей затопления и границ снежного покрова, динамику их изменения.

Океанография и морские ресурсы . При решении задач в этой области актуальными являются обнаружение живых морских организмов, исследование течений, картирование береговой линии, картирование отмелей и мелей, картирование льдов для целей судовождения, а также исследование морских волн.

Окружающая среда . Пожалуй, наиболее актуальными для использования данных ДЗ является именно эта область. Вопросы безопасности и мониторинга окружающей среды стоят перед современным человечеством наиболее остро. Данные ДЗ активно используются для мониторинга разработок полезных ископаемых, картирования и мониторинга загрязнения поверхностных вод, обнаружения атмосферного загрязнения, определения последствий стихийных бедствий и чрезвычайных ситуаций, а также мониторинга воздействия человеческой активности на окружающую среду в целом.

Таким образом, одними из наиболее распространенных задач в представленных областях, использующих данные ДЗ, являются задачи мониторинга и наблюдения за определенными территориями земной поверхности и атмосферы, обновление и составление карт, а также составление тематических карт и атласов .

Как известно топографические карты дают человеку представление об окружающем мире и позволяют легко ориентироваться даже на незнакомой местности. Однако топографические карты крупных масштабов, таких как 1:10 000 – 1:50 000, достаточно редко доступны простому потребителю, в то время, как с развитием сети Internet и картографического сервиса Google Earth, доступны космические изображения поверхности Земли с высоким пространственным разрешением. Это дает возможность не только использовать их для ориентировки на местности, но и помогает вносить коррективы в имеющиеся старые топографические карты. Городские службы, активно занимающиеся обновлением топографических карт населенных пунктов, наиболее заинтересованы в получении периодической съемки с высоким разрешением определенных участков земной поверхности.

В качестве первичного материала для топографических карт традиционно использовались аэрофотоснимки. Космические цифровые снимки открывают новые возможности: удешевление повторных съемок, увеличение площади охвата местности и снижение искажений, вызванных рельефом. Кроме того, упрощается генерализация изображения на мелкомасштабных картах: вместо трудоемкого упрощения крупномасштабных карт можно сразу использовать космические снимки среднего разрешения. Поэтому съемки из космоса используют все шире и в перспективе могут стать основным методом обновления топографических карт .

При выборе снимков для составления карт определенного масштаба учитывают графическую точность рисовки и печати карт (0,1 мм). Например, снимки должны иметь пространственное разрешение не хуже 100 м для карт масштаба 1:1 000 000 и не хуже 10 м для карт масштаба 1:100 000.

При обновлении карт наносятся лишь изменения контуров элементов, а при составлении карт необходимо определить точное положение этих элементов. Поэтому для составления топографических карт требуются снимки более высокого разрешения, чем для их обновления. Следует также учитывать, что при составлении и обновлении топографических карт определенного масштаба одни и те же типы космических снимков могут быть пригодны или непригодны для различных элементов содержания топографических карт .

На основе материалов издания в табл. 1.3 представлены рекомендуемые масштабы для составления и обновления топографических, обзорно-топографических и обзорных карт по космическим снимкам.

и пространственного разрешения для составления (С) и обновления (О) карт

Пр.* Масштаб
10 000 – 25 000 25 000 – 50 000 50 000 – 100 000 100 000 – 200 000 200 000 – 500 000 500 000 – 1 000 000 Мельче 1 000 000
250 – 1000 м С О
140 м О С О
35 – 45 м С О С О С О
30 м О С О С О
15 м О С О С О
10 м С О С О
5 м О С О
Выше 1 м С О С О

Пр.* – пространственное разрешение космической съемки

Космические снимки широко используются для обновления геологических, геоморфологических, гидрологических, океанологических, метеорологических, геоботанических, почвенных, ландшафтных карт. Для каждого типа тематических карт имеется своя методика их составления обновления по космическим снимкам, использующая в определенном сочетании рисунок снимка и значения яркости в каждой его точке (соответствующие спектральной отражательной способности поверхности, ее температуре или другим характеристикам, в зависимости от типа снимка). Использование космических снимков при составлении тематических карт способствует увеличению детальности карты и рисовке контуров, в большей мере соответствующих природному рисунку.

При тематическом картографировании требования к точности нанесения положения объекта обычно несколько ниже, чем для топографических карт. Поэтому по одним и тем же снимкам можно составлять тематические карты более крупного масштаба.

Следует отметить, что использование космических снимков, в сочетании с полевыми исследованиями, позволяет оперативно обновлять различные серии государственных карт, в том числе карты лесной таксации, карты почв, геоботанические карты.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ДИСТАНЦИОННОЕ

ЗОНДИРОВАНИЕ ЗЕМЛИ ПРИ ГЕОЛОГИЧЕСКИХ

ИССЛЕДОВАНИЯХ

Учебное пособие для вузов

Составители: А. И. Трегуб, О. В. Жаворонкин

Издательско-полиграфический центр Воронежского государственного университета

Рецензент кандидат геолого-минералогических наук, доцент кафедры полезных ископаемых и недропользования Ю. Н. Стрик

Учебное пособие подготовлено на кафедре общей геологии и геодинамики геологического факультета Воронежского государственного университета.

Рекомендуется для студентов очной и заочной форм обучения геологического факультета Воронежского государственного университета при изучении курсов: «Дистанционное зондирование Земли», «Аэрокосмические исследования литосферы», «Аэрокосмические методы».

Для направления: 020300 – Геология

ВВЕДЕНИЕ .......................................................................................................

1. ТЕХНИЧЕСКИЕ СРЕДСТВА И ТЕХНОЛОГИИ

АЭРОКОСМОСЪЕМКИ ................................................................................

1.1. Аэросъемка.........................................................................................

1.2. Космическая съемка...........................................................................

1.3. Краткая характеристика космических съемочных систем

некоторых стран......................................................................................

2. МАТЕРИАЛЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ

ЗЕМЛИ В ГЕОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ............................

2.1. Физические основы дистанционного зондирования Земли.........

2.2. Материалы дистанционного зондирования Земли........................

2.3. Обработка и преобразование материалов дистанционного

зондирования Земли................................................................................

2.4. Обработка и преобразование цифрового рельефа........................

2.5. Пакеты программ для обработки и анализа материалов

дистанционного зондирования Земли...................................................

3. МЕТОДИЧЕСКИЕ ОСНОВЫ ДЕШИФРИРОВАНИЯ

МАТЕРИАЛОВ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ

ЗЕМЛИ .............................................................................................................

3.1. Общие принципы дешифрирования материалов

дистанционного зондирования..............................................................

3.2. Дешифровочные признаки..............................................................

3.3. Методы дешифрирования................................................................

4. ГЕОЛОГИЧЕСКОЕ ДЕШИФРИРОВАНИЕ МАТЕРИАЛОВ

ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ...............................................

4.1. Дешифрирование коренных пород.................................................

4.2. Дешифрирование четвертичных образований..............................

4.3. Геоморфологическое дешифрирование..........................................

5. ПРИМЕНЕНИЕ МАТЕРИАЛОВ ДИСТАНЦИОННОГО

ЗОНДИРОВАНИЯ ЗЕМЛИ ПРИ ГЕОЛОГИЧЕСКОМ

КАРТИРОВАНИИ И ПОИСКОВЫХ РАБОТАХ .....................................

5.1. Материалы дистанционного зондирования при геологическом

картировании...........................................................................................

5.2. Материалы дистанционного зондирования

при прогнозно-поисковых исследованиях............................................

ЛИТЕРАТУРА .................................................................................................

ВВЕДЕНИЕ

Дистанционное зондирование Земли (ДЗЗ) – это изучение нашей планеты с помощью воздушных и космических летательных аппаратов, на которых установлены различные сенсоры (датчики), позволяющие получить информацию о характере поверхности Земли, состоянии ее воздушной и водной оболочек, о ее геофизических полях. Материалы дистанционного зондирования используются в самых разных отраслях народного хозяйства. Важнейшее значение они имеют и при геологических исследованиях.

Историю развития методов дистанционного зондирования

(МДЗ) обычно начинают с 1783 года, с первого запуска аэростата братьев Монгольфье, положившего начало аэровизуальным наблюдениям поверхностиЗемли. В1855 годупервыефотографиисвоздушногошара, полученные с высоты около 300 м, были использованы для составления точного плана г. Парижа. Для геологических целей фотографирование Альп с высоких вершин впервые применил французский геолог Эмме Цивилье (1858–1882).

Начало использования аэрофотосъемки в России датируется

1866 годом, когда поручик А. М. Ковалько с воздушного шара на высотах от 600 до 1000 метров произвел съемку Санкт-Петербурга и Кронштадта. Систематические съемки в России для составления топографических карт и исследований природных ресурсов начались с 1925 года, с момента зарождения гражданской авиации. В этих целях в 1929 году

в Ленинграде был образован институт аэрофотосъемки. Инициатором его создания и первым директором был академик Александр Евгеньевич Ферсман. С 1938 года использование материалов аэрофотосъемки стало обязательным при проведении геолого-съемочных работ. В сороковых годах при Геологическом комитете была создана Аэрофотогеологическая экспедиция, преобразованная в 1949 году во Всесоюзный аэрогеологический трест (ВАГТ), который позднее был реорганизован

в научно-производственное геологическое объединение «Аэрогеология» (ныне ФГУНПП «Аэрогеология»). Параллельно в то же время была образована Лаборатория аэрометодов «ЛАЭМ» (ныне «Науч- но-исследовательский институт космоаэрогеологических методов» – ГУП «ВНИИКАМ»). В результате их деятельности к 1957 году была проведена мелкомасштабная съемка всей территории СССР и составлена Государственная геологическая карта в масштабе 1: 1 000 000. В шестидесятые-семидесятые годы разработаны и внедрены в произ-

водство новые виды региональных исследований: групповая геологическая съемка (ГГС) и аэрофотогеологическое картирование (АФГК); появились спектрозональная, тепловая, радиолокационная съемки. Развитие аэрометодов предопределило переход дистанционного зондирования Земли на новый качественный уровень – изучение Земли из космоса.

Развитие космонавтики начиналось с разработки баллистических ракет, которые использовались, в частности, для производства фотосъемки поверхности Земли с больших (около 200 км) высот. Первые снимки были получены 24 октября 1946 года с помощью ракеты V-2 (немецкой ракеты Fau-2), запущенной с полигона White Sands (США) на суборбитальную траекторию. Была произведена съемка земной поверхности 35-миллиметровой кинокамерой на черно-белую фотопленку с высоты около 120 км. До конца пятидесятых годов фотосъемка земной поверхности преимущественно в военных целях проводилась разными странами с помощью баллистических ракет.

былзапущенпервыйвмиреискусственныйспутникЗемли(ИСЗ) – ПС-1 (Простейший спутник – 1). Для выведения на орбиту была использована баллистическая ракета Р-7 («Спутник»). Масса спутника составляла 83,6 кг, диаметр– 0,58 м, периодобращения96,7 мин. Перигей– 228 км, апогей – 947 км. Спутник имел форму шара, был снабжен двумя антеннами и радиопередатчиком – маяком. Он совершил 1440 витков вокруг Земли, а 4 января 1958 г. вошел в плотные слои атмосферы и прекратил существование. За время его полета была получена новая информация о структуре верхних слоев атмосферы.

ПерваяпопытказапускаИСЗVangard-1 спомощьюракетыJpiter-C в США 6 декабря 1957 года закончилась аварией. Со второй попытки (1 февраля 1958 года) такой же ракетой на орбиту был выведен ИСЗ Explorer-1. Спутник имел форму сигары, весил 13 кг. На борту имел оборудование для регистрации микрометеоритов и уровня радиации. С его помощью были открыты радиационные пояса Земли. Спутник совершил 58 тысяч витков вокруг Земли и сгорел в атмосфере 31 марта 1970 года. Параметрыего орбиты: апогей– 2548 км, перигей 356 км. В активном режиме работал до 23 мая 1958 г. 7 августа 1959 г. в США был запущен «Explorer-6», который передал первое телевизионное изображение Земли из космоса. Первый ИСЗ для метеонаблюдений (Tiros-1) был запущен в США 1 апреля 1960 года. Спутник с аналогич-

26 ноября 1965 г. Франция запустила свой ИСЗ «Астерикс-1». 11 февраля 1970 г. вывела на орбиту ИСЗ «Осуми» Япония. 24 апреля того же года космической державой стал Китай (ИСЗ «Дунфанхун»). Англия запустила свой первый ИСЗ «Просперо» 28 октября 1971 г., а 18 июля 1980 г. – Индия (ИСЗ «Рохини»).

Началопилотируемыхполетоввкосмосположено12 апреля1961 года Юрием Алексеевичем Гагариным на корабле «Восток», а 6 августа того же года Герман Степанович Титов впервые произвел фотосъемку Земли с пилотируемого космического корабля «Восток». В отечественной космонавтике большое значение имели спутники серии «Космос». Первый запуск ИСЗ этой серии был произведен 16 марта 1962 года, а к 2007 году уже было запущено 2400 спутников различного назначения. Примерно каждые три года выводилось на орбиту по 250 ИСЗ серии «Космос». Значительнаячастьизнихбыласнабженаоборудованиемдля выполнения ресурсных исследований. С их помощью для всей территория СССР были получены космические фотоснимки высокого качества. Современная группировка Российских спутников насчитывает более 110 аппаратов различного назначения. Экономический эффект только от применения ИСЗ серии «Ресурс-0» составил около 1,2 млрд руб. в год, а спутников серий «Метеор» и «Электро» – 10 млрд руб. в год.

В настоящее время свои спутниковые системы, кроме России и США, имеют Франция, Германия, Европейский Союз, Индия, Китай, Япония, Израиль и другие страны.

1. ТЕХНИЧЕСКИЕ СРЕДСТВА И ТЕХНОЛОГИИ АЭРОКОСМОСЪЕМКИ

Технологии аэросъемок в развитии дистанционных исследований Земли предшествовали технологиям космических съемок. На начальных этапах развития дистанционного зондирования Земли из космоса в негоперешлимногиетехнологическиеприемыпроведенияаэросъемки, нопомереразвитиякосмическихисследованийвозникалииновыеприборы, а также новые технологии. При этом важнейшее значение имело становление и бурное развитие компьютерных технологий, направленных на обработку данных дистанционного зондирования.

1.1. Аэросъемка

Аэросъемка земной поверхности может выполняться в зависимости от поставленных задач с помощью самолетов и вертолетов, аэростатов и даже мотодельтапланов, а также беспилотных летательных аппаратов. Различают фотографическую, тепловую, радиолокационную и многозональную аэросъемки. Фотографическая съемка (аэрофотосъемка) для целей геологического картирования является наиболее важной, не только потому, что обладает наибольшей информативностью, но и потому, что за время ее проведения накоплено значительное количество аэрофотоматериалов различных масштабов и по различным регионам. Поэтому при проведении геолого-съемочных работ бывает экономическиболеецелесообразнымиспользоватьужеимеющиесявфондахаэрофотоматериалы, чем заказывать производство новой аэрофотосъемки.

Аэрофотосъемка местностииспользуетсявразличныхцелях, важнейшими из них являются составление и корректировка топографических карт, геологические исследования. Аэрофотосъемка может быть точечной, маршрутной и площадной. Точечная съемка выполняется при изученииточечныхобъектов. Маршрутнаясъемкапроводитсяпозаданной линии (линии берега, вдоль русла реки и т. п.). Площадная съемка выполняется в пределах заданных площадей, которые обычно определяются рамками топографических планшетов. Важным требованием к съемке является требование об обязательном перекрытии площадей соседних снимков. По линии маршрута – продольное перекрытие, оно должно составлять не менее 60 %, а между маршрутами (поперечное перекрытие) – не менее 30 %. Должна также выдерживаться заданная высота полета. Соблюдение этих параметров необходимо для возможности получения стереоэффекта (объемного изображения местности).

Аэрофотосъемка может быть плановой и перспективной. Плановая аэрофотосъемка, предназначенная для решения топографических задач, отличается повышенными требованиями к предельным отклонениям плоскостиснимкаотгоризонтальнойплоскости. Перспективныеснимки в комплекте с плановыми снимками весьма полезны при изучении геологического строения высокогорных территорий с крутыми склонами.

Для аэрофотосъемки в пределах территории России чаще всего используются самолеты Ан-2, Ан-28 ФК, Ан-30, Ту-134 СХ.

На протяжении более чем 60 лет (рекорд в «Книге Гиннеса»!) основным самолетом был (остается и сейчас) Ан-2 (его аэрофотосъемочная модификация Ан–2Ф). Он отличается высокой надежностью,

техническими параметрами, отвечающими условиям проведения аэрофотосъемки: возможность использования грунтовых аэродромов с длиной полосы разбега при взлете не более 200 м, а при посадке – 120 м; предельная высота полета 5200 м (при практическом потолке 4500 м); экономичный поршневой двигатель мощностью 1000 л. с.; скорость полетавпределахот150 до250 км/часидальностьполета(990 км), достаточная для выполнения съемки на больших площадях; большой объем фюзеляжа, позволяющий свободно размещать оборудование и экипаж из трех человек (вместе с оператором).

С 1974 г. используется специализированный самолет Ан-30. Его силовая установка состоит из двух турбовинтовых двигателей, мощностью по 2820 л. с., и дополнительного реактивного двигателя мощностью 500 л. с. Крейсерская скорость самолета – 435 км/час, максимальная высота полета – 8300 м. Дальность действия – 1240 км, длина разбега по взлетно-посадочной полосе с бетонным покрытием – 720 м, средний расход топлива – 855 кг/час. Максимальный взлетный вес самолета – 23 т. Вес фотооборудования – 650 кг. Экипаж (включая оператора) состоит из 7 человек. Аэрофотосъемка выполняется в масштабах от 1: 3 000 до 1: 200 000. В настоящее время в распоряжении военновоздушных сил (ВВС) осталось не более 10 машин этого типа. Сходными характеристиками обладают самолеты Ан-28 ФК.

Сельскохозяйственный самолет Ту-134 СХ разработан в 1984 г. На самолете установлена радиолокационная станция бокового обзора (РЛСБО). Специальный навигационный комплекс «Маяк» и система автоматического управления поддерживают заданный курс и осуществляют фотосъемку местности в соответствии с заданной программой. Пять бортовых фотоаппаратов позволяют проводить съемку в радиочастотном, видимом и инфракрасном диапазонах. В салоне – 9 рабочих мест соспециальнойаппаратурой, пультамиуправленияифотолабораторией (дляобработкифотоматериаловвполете). Заодинрейс(4,5 часа) может быть заснята территория 100 × 100 км (10 000 км² – примерная площадь двух топографических планшетов в масштабе 1: 200 000).

Аэрофотосъемкавыполняетсяспомощьюспециальныхшироко-

угольных фотоаппаратов , которые устанавливаются в люке фюзеляжа самолета. Для фиксации фотоаппарата в горизонтальной плоскости используются гиросистемы. Фотопленка помещается в специальных кассетах емкостью по 30 или 60 м. Ширина пленки, в зависимости от параметров фотоаппарата, составляет 18 см или 30 см. В комплект обо-

рудования входит также реле времени (часовой механизм), обеспечивающий заданную экспозицию съемки и режим перемотки пленки. В настоящее время чаще всего используются фотоаппараты с объективами серии «Уран»: с фокусными расстояниями 250 мм, углом поля зрения 54º, размером кадра 180 × 180 мм («Уран-9»), а также с фокусным расстоянием 750 мм и размером кадра 300 х 300 мм («Уран-16»).

В последние годы для производства аэрофотосъемки все чаще применяются цифровые съемочные системы. В целом цифровые ка-

меры более надежны в эксплуатации, существенно сокращают длительность технологического процесса, цифровые снимки свободны от «зернистости». Они обеспечивают возможность получения панхроматических, цветных и спектрозональных снимков в видимом и ближнем инфракрасном диапазонах. Интервал фотографирования составляет менее одной секунды, что позволяет выполнять крупномасштабную съемку с продольным перекрытием до 80–90 %. Среди общих свойств цифровых аэрофотоаппаратов различных систем следует указать на использование приемников излучения матричного или линейного типа; синтезированный кадр (для широкоформатных камер) – результирующий кадр системы формируется из набора субкадров, соответствующих матриц или линейных приемников; GPS/INS поддержка – пространственные и угловые координаты систем координат аэрофотоаппаратов (элементы внешнего ориентирования) определяются с использованием средств инерциальной навигации и систем спутникового геопозиционирования GPS или ГЛОНАС.

Радарная (радиолокационная) аэросъемка выполняется с помо-

щью радиолокационных систем бокового обзора (РЛСБО), установленных на борту самолета. От источника микроволнового излучения сигнал направляется к земной поверхности, отражается от нее и возвращается на приемную антенну. С помощью специальных программ запись отраженных сигналов преобразуется в фотографическое изображение земной поверхности.

1.2. Космическая съемка

Космическаясъемказемнойповерхностивпоследниегодыпревратилась в самостоятельную ветвь дистанционного зондирования Земли. Системы космического зондирования включают несколько важнейших элементов: транспортные средства доставки необходимого оборудования на околоземную орбиту, космические платформы – носители

средств наблюдения, сенсоры (датчики), средства передачи информации и наземные центры приема, обработки этой информации, доставки ее потребителю.

Основными транспортными средствами доставки необходимо-

го оборудования на околоземные орбиты являются ракеты различного класса. В СССР наиболее ранними из них были трехступенчатые ракеты легкого класса «Восток». С их помощью осуществлялись пилотируемые полеты, запускались искусственные спутники Земли (ИСЗ) серии «Космос», лунные станции. Кроме того, в этом классе широко применяются многие носители, снятые с вооружения, в частности ракета «Зенит», предназначенная также в качестве элемента разгонного блока системы «Энергия – Буран».

Трехступенчатая ракета среднего класса «Союз», грузоподъемностью около 7 тонн с успехом используется, равно как и созданная на ее основе четырехступенчатая ракета «Молния», для запусков ИСЗ «Прогноз», «Молния».

Созданная почти полвека назад многоступенчатая ракета тяжелого класса «Протон» грузоподъемностью более 20 тонн использовалась и используется сейчас в различных целях: для исследования Луны, планет Солнечной системы, для выведения на околоземную орбиту обитаемых станций «Салют», «Мир», на геостационарные орбиты спутников «Горизонт», «Радуга», «Экран» и др.

В мае 1987 года в связи с разработкой программы по созданию многоразового космического корабля «Энергия – Буран» была введена

в эксплуатацию двухступенчатая ракета сверхтяжелого класса «Энергия» со стартовой массой более 2000 тонн и грузоподъемностью около 200 тонн. Помимо применения этой ракеты для выведения на околоземную орбиту многоразовых кораблей, она может быть использована и для доставки других грузов. Это выгодно отличает систему «Энергия – Буран» от похожей по назначению американской системы «Space Shuttle».

Наиболее часто применяемыми зарубежными ракетами являются ракеты серии «Delta» (США) и «Arian» (Франция).

Кроме ИСЗ для ресурсных исследований в России использовались орбитальные станции («Салют-4, 5, 6», «Мир»), а также пилотируемые корабли серии «Союз».

В СШАважнаярольвкосмическихисследованияхотводиласьпроекту «Space Shuttle». Проект изначально разрабатывался в военных це-

К ним относятся например такие важные как проблемы экологии и мониторинга окружающей среды природопользование и эффективное управление земельными ресурсами военное дело борьба с терроризмом картографирование и другие. Фактически ДЗ начало свой путь в 1840х годах когда пилоты воздушных шаров получили картинки земной поверхности используя новейшее изобретение – фотокамеру. В этом случае мы наблюдаем множество объектов и особенностей на поверхности такими какими бы они выглядели на тематической карте в их действительных...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


PAGE \* MERGEFORMAT 2

Лекция. Введение в ДЗ

Обработка и дешифрирование аэрокосмических изображений является актуальным и перспективным направлением научно-практической деятельности человечества. Происходит это потому, что оперативное получение материалов дистанционного зондирования Земли (ДЗЗ) из космоса позволяет решать целый круг весьма сложных и важных задач, находить ответы на многие интересующие вопросы. Эти вопросы охватывают практически все сферы повседневной жизни людей. К ним относятся, например, такие важные, как проблемы экологии и мониторинга окружающей среды, природопользование и эффективное управление земельными ресурсами, военное дело, борьба с терроризмом, картографирование и другие.

Обработка и дешифрирование аэрокосмических изображений являются неотъемлемой составляющей дистанционного зондирования (ДЗ). Дадим несколько наиболее известных определений ДЗ.

Дистанционное зондирование — получение и измерение данных о некоторых характеристиках явления, объекта или материала записывающим устройством, не находящимся в физическом, непосредственном контакте с объектом исследования; технические приемы, включающие в себя накопление знаний о свойствах окружения путем измерения силовых полей, электромагнитного излучения или акустической энергии с применением камер, лазеров, радиоприемников, радарных систем, сонаров, теплорегистрирующих устройств, сейсмографов, магнетометров, гравиметров, сцинтиллометров и других инструментальных средств.

Дистанционное зондирование – это технология, базирующаяся на распознавании электромагнитных и силовых полей с целью получения и интерпретации геопространственных данных для выявления информации о характерных особенностях, объектах и классах на Земной поверхности, в океанах и атмосфере, а также (если это возможно) на других космических объектах.

Дистанционное зондирование связано с регистрацией и измерением фотонов различной энергии, исходящих из удаленных материалов, с целью обеспечения возможности идентификации и категоризации по классу/типу, веществу и пространственному распределению.

Дистанционное зондирование – получение информации об объекте по данным измерений, сделанных на расстоянии от объекта, т. е. без прямого контакта с объектом.

Понятие ДЗ появилось в XIX веке вслед за изобретением фотографии.
В одной из первых областей, в которых стали применять этот метод, стала астрономия. Впоследствии, ДЗ начали использовать в военной области для сбора информации о противнике и принятия стратегических решений. Фактически ДЗ начало свой путь в 1840-х годах, когда пилоты воздушных шаров получили картинки земной поверхности, используя новейшее изобретение – фотокамеру.

4 октября 1957 года СССР осуществил вывод на орбиту первого искусственного спутника Земли – Спутник-1.

12 апреля 1961 года в 9 часов 7 минут по московскому времени с космодрома Байконур стартовал космический корабль “Восток” с пилотом-космонавтом Юрием Алексеевичем Гагариным на борту. Первый полет человека длился 108 минут – космонавт приземлился неподалеку от деревни Смеловки в Саратовской области.

Возможности ДЗ США в военной области были очень значительны и еще более возросли после 1960 года в результате запуска разведывательных спутников в рамках программ CORONA, ARGON и LANYARD

Первый метеорологический спутник был запущен в США 1 апреля 1960 года. Он использовался для прогноза погоды, наблюдения за перемещением циклонов и других подобных задач. Первым среди спутников, которые применялись для регулярной съемки больших участков земной поверхности, стал TIROS-1 (Television and Infrared Observation Satellite).

Первый специализированный спутник для целей ДЗ был запущен в 1972 году. Он назывался ERTS-1 (Earth Resources Technology Satellite) и использовался, в основном, для целей сельского хозяйства. В настоящее время спутники этой серии носят название Landsat. Они предназначены для регулярной многозональной съемки территорий со средним разрешением.

Дистанционное зондирование включает использование инструментов, или сенсоров, для «захвата» спектральных и пространственных отношений между объектами и материалами, наблюдаемыми с расстояния – обычно, находясь над ними. Как правило, мы обозреваем наш мир с более или менее горизонтальной точки зрения, поскольку живем на его поверхности. Но, при этих условиях, то, что мы видим, ограничено областью в несколько квадратных километров по причине наличия различных препятствий – зданий, деревьев, складок местности. Видимая нами область значительно увеличивается, если мы смотрим вниз, например, с высокого здания или вершины горы. Она увеличивается еще больше – до сотен квадратных километров, если мы бросаем взгляд вниз с авиалайнера, летящего на высоте 10 километров. С вертикальной или значительно возвышенной перспективы, наши впечатления о поверхности под нами заметно отличается от того, когда мы осматриваем окружающий мир, находясь в некоторой точке этой поверхности. В этом случае мы наблюдаем множество объектов и особенностей на поверхности такими, какими бы они выглядели на тематической карте в их действительных пространственных и контекстных взаимосвязях. Именно поэтому дистанционное зондирование очень часто осуществляется с платформ, таких как самолеты или космические аппараты, имеющих бортовые датчики, регистрирующие и анализирующие с высоты объекты и особенности территории на больших площадях. Это практичный, упорядоченный и эффективный в отношении цены путь получения и обновления информации об окружающем нас мире.

Далее приведён краткий список космических аппаратов, которые использовались, а некоторые и используются, для ДЗ земной поверхности, океанов и наблюдения за погодой. В скобках указан год запуска первого из спутников серии.

Группа 1 – в основном наблюдения земной поверхности:

Landsat (1973); Seasat (1978); HCMM (1978); SPOT (France) (1986);

RESURS (Russia) (1985); IRS (India) (1986); ERS (1991); JERS (Japan) (1992); Radarsat (Canada) (1995); ADEOS (Japan) (1996). Современные : WorldView, EO-1, QuickBird, OrbView, Сич -2, EgypetSat, Ikonos, Terra, TerraSAR-X, TanDEM-X и др .

Группа 2 – в основном метеорологические наблюдения:

TIROS (1960); Nimbus (1964); ESSA (1966); ATS (g) (1966);

Российские Kosmos (1968) и Meteor (1969); ITOS (1970); SMS (g) (1975);

NOAA (1-5) (1976); Meteosat (1978); NOAA (6-14) (1982);

Группа 3 – в основном океанографические наблюдения:

Seasat (1978); Nimbus 7 (1978) включал CZCS (Coastal Zone Color Scanner), который измерял концентрацию хлорофилла в морской воде; Topex-Poseidon (1992); SeaWiFS (1997). Современные : Океан-О , Terra, Aqua.

Этот очень небольшой (перечислены одни из самых известных) и постоянно пополняющийся список убеждает в том, что дистанционное зондирование стало широко используемым технологическим и научным инструментом, используемым для мониторинга планетных поверхностей и атмосферы. Расходы на наблюдение Земли и других планет, начиная с первых дней космических программ по настоящее время, превысили 150 миллиардов долларов. Большая часть этих денег была направлена на практические приложения, в основном фокусирующиеся на управлении природными ресурсами и окружающей средой.

Области применения данных ДЗЗ

На данный момент сложно найти передовую отрасль, направление деятельности людей, где не применялись технологии ДЗ. Рассмотрим кратко основные области применения данных ДЗ.

Сельское, лесное и охотничье хозяйство . В данной области данные ДЗ применяют для различения типов вегетации и их состояния, оценки площадей посевов, лесных и охотничьих угодий по типам культур, определяют состояние почв и площади выгоревших участков.

Картография и землепользование . При решении различных задач землепользования с использованием данных ДЗ важнейшими являются классификация, картографирование и обновление карт, категоризация земель, разделение урбанизированных и сельских районов, региональное планирование, картирование транспортных сетей, картирование границ водасуша.

Геология . Это одна из первых областей, при изучении которой активно использовалась съемка с воздушных шаров, самолетов и, впоследствии, с космических платформ. Наиболее часто данные ДЗ используют в этой области для различения типов пород, картирования больших геологических образований, обновления геологических карт и поиска указаний на определенные минералы.

Водные ресурсы . При исследовании водных ресурсов с использованием данных ДЗ чаще всего специалисты определяют границы водных объектов, их площади и объемы, исследуют мутность и турбулентность, проводят картирование областей затопления и границ снежного покрова, динамику их изменения.

Океанография и морские ресурсы . При решении задач в этой области актуальными являются обнаружение живых морских организмов, исследование течений, картирование береговой линии, картирование отмелей и мелей, картирование льдов для целей судовождения, а также исследование морских волн.

Окружающая среда . Пожалуй, наиболее актуальными для использования данных ДЗ является именно эта область. Вопросы безопасности и мониторинга окружающей среды стоят перед современным человечеством наиболее остро. Данные ДЗ активно используются для мониторинга разработок полезных ископаемых, картирования и мониторинга загрязнения поверхностных вод, обнаружения атмосферного загрязнения, определения последствий стихийных бедствий и чрезвычайных ситуаций, а также мониторинга воздействия человеческой активности на окружающую среду в целом.

Таким образом, одними из наиболее распространенных задач в представленных областях, использующих данные ДЗ, являются задачи мониторинга и наблюдения за определенными территориями земной поверхности и атмосферы, обновление и составление карт, а также составление тематических карт и атласов .

Как известно топографические карты дают человеку представление об окружающем мире и позволяют легко ориентироваться даже на незнакомой местности. Однако топографические карты крупных масштабов, таких как 1:10 000 – 1:50 000, достаточно редко доступны простому потребителю, в то время, как с развитием сети Internet и картографического сервиса Google Earth , доступны космические изображения поверхности Земли с высоким пространственным разрешением. Это дает возможность не только использовать их для ориентировки на местности, но и помогает вносить коррективы в имеющиеся старые топографические карты. Городские службы, активно занимающиеся обновлением топографических карт населенных пунктов, наиболее заинтересованы в получении периодической съемки с высоким разрешением определенных участков земной поверхности.

В качестве первичного материала для топографических карт традиционно использовались аэрофотоснимки. Космические цифровые снимки открывают новые возможности: удешевление повторных съемок, увеличение площади охвата местности и снижение искажений, вызванных рельефом. Кроме того, упрощается генерализация изображения на мелкомасштабных картах: вместо трудоемкого упрощения крупномасштабных карт можно сразу использовать космические снимки среднего разрешения. Поэтому съемки из космоса используют все шире и в перспективе могут стать основным методом обновления топографических карт .

При выборе снимков для составления карт определенного масштаба учитывают графическую точность рисовки и печати карт (0,1 мм). Например, снимки должны иметь пространственное разрешение не хуже 100 м для карт масштаба 1:1 000 000 и не хуже 10 м для карт масштаба 1:100 000.

При обновлении карт наносятся лишь изменения контуров элементов, а при составлении карт необходимо определить точное положение этих элементов. Поэтому для составления топографических карт требуются снимки более высокого разрешения, чем для их обновления. Следует также учитывать, что при составлении и обновлении топографических карт определенного масштаба одни и те же типы космических снимков могут быть пригодны или непригодны для различных элементов содержания топографических карт .

На основе материалов издания в табл. 1.3 представлены рекомендуемые масштабы для составления и обновления топографических, обзорно-топографических и обзорных карт по космическим снимкам.

и пространственного разрешения для составления (С) и обновления (О) карт

Пр.*

Масштаб

10 000 –

25 000

25 000 –

50 000

50 000 –

100 000

100 000 –

200 000

200 000 –

500 000

500 000 –

1 000 000

Мельче

1 000 000

250 – 1000 м

140 м

35 – 45 м

30 м

15 м

10 м

5 м

Выше 1 м

Пр.* – пространственное разрешение космической съемки

Космические снимки широко используются для обновления геологических, геоморфологических, гидрологических, океанологических, метеорологических, геоботанических, почвенных, ландшафтных карт. Для каждого типа тематических карт имеется своя методика их составления обновления по космическим снимкам, использующая в определенном сочетании рисунок снимка и значения яркости в каждой его точке (соответствующие спектральной отражательной способности поверхности, ее температуре или другим характеристикам, в зависимости от типа снимка). Использование космических снимков при составлении тематических карт способствует увеличению детальности карты и рисовке контуров, в большей мере соответствующих природному рисунку.

При тематическом картографировании требования к точности нанесения положения объекта обычно несколько ниже, чем для топографических карт. Поэтому по одним и тем же снимкам можно составлять тематические карты более крупного масштаба.

Следует отметить, что использование космических снимков, в сочетании с полевыми исследованиями, позволяет оперативно обновлять различные серии государственных карт, в том числе карты лесной таксации, карты почв, геоботанические карты.

Другие похожие работы, которые могут вас заинтересовать.вшм>

1999. Дистанционное обучение и его принципы 16.13 KB
Термин дистанционное обучение означает конкретную форму обучения которая основана на конкретных технологических и методологических решениях и может дополнять другие традиционные формы обучения например очную классноурочную или в отдельных случаях заменять их например если учащемуся недоступны иные варианты связи с удаленностью места проживания или с проблемами со здоровьем. Название дистанционное образование не следует считать правильным поскольку под термином образование понимается весь процесс обучения и воспитания...
15548. Дистанционное обучение и его роль в образовании личности XXI века 109.13 KB
Создание системы образования, соответствующей современному образу мира и способной подготовить население нашей планеты к жизни в его условиях – одна из наиболее принципиальных и актуальных проблем общества, в котором развитость и совершенство методов и средств современных информационных и коммуникационных технологий создают реальные возможности для их использования в системе образования.
18986. Система видеонаблюдения. Дистанционное управление. Основные неисправности электрических машин и причины их возникновения 240.16 KB
Квадраторы получили свое название из-за того что первые модели делили экран на 4 окна и в каждом отображалась одна из камер. Для оперативной работы оператор имеет возможность вывести на экран любое изображение или исключить любую камеру. Запись видеоизображения может осуществляться на специализированные видеомагнитофоны в традиционных системах или в цифровой форме при помощи компьютера. Управление системами телевизионного наблюдения в зависимости от их сложности и обстановки на объекте может быть автоматическим или ручным.
  • Административно-правовые методы государственного управления. Государственное регулирование.
  • Административные и правовые методы управления. Принуждение как метод управления.
  • Методы дистанционного зондирования основаны на том, что любой объект излучает и отражает электромагнитную энергию в соответствии с особенностями его природы. Различия в длинах волн и интенсивности излучения могут быть использованы для изучения свойств удаленного объекта без непосредственного контакта с ним.

    Дистанционное зондирование сегодня - это огромное разнообразие методов получения изображений практически во всех диапазонах длин волн электромагнитного спектра (от ультрафиолетовой до дальней инфракрасной) и радиодиапазона, самая различная обзорность изображений - от снимков с метеорологических геостационарных спутников, охватывающих практически целое полушарие, до детальных аэросъемок участка в несколько сот квадратных метров.

    Фотосъемки

    Фотографические снимки поверхности Земли получают с пилотируемых кораблей и орбитальных станций или с автоматических спутников. Отличительной чертой КС является высокая степень обзорности, охват одним снимком больших площадей поверхности. В зависимости от типа применяемой аппаратуры и фотопленок, фотографирование может производиться во всем видимом диапазоне электромагнитного спектра, в отдельных его зонах, а также в ближнем ИК (инфракрасном) диапазоне.

    Масштабы съемки зависят от двух важнейших параметров: высоты съемки и фокусного расстояния объектива. Космические фотоаппараты в зависимости от наклона оптической оси позволяют получать плановые и перспективные снимки земной поверхности.

    В настоящее время используется фотоаппаратура с высоким разрешением, позволяющая получать КС с перекрытием 60% и более. Спектральный диапазон фотографирования охватывает видимую часть ближней инфракрасной зоны (до 0,86 мкм).

    Известные недостатки фотографического метода связаны с необходимостью возвращения пленки на Землю и ограниченным ее запасом на борту. Однако фотографическая съемка - в настоящее время самый информативный вид съемки из космического пространства. Оптимальный размер отпечатка 18х18 см, который, как показывает опыт, согласуется с физиологией человеческого зрения, позволяя видеть все изображение одновременно.

    Для удобства пользования из отдельных КС, имеющих перекрытия, монтируются фотосхемы (фотомозаики) или фотокарты с топографической привязкой опорных точек с точностью 0,1 мм и точнее. Для монтажа фотосхем используются только плановые КС.



    Для приведения разномасштабного, обычно перспективного КС к плановому используется специальный процесс, называемый трансформированием. Трансформированные КС с успехом используются для составления космофотосхем и космофотокарт и обычно легко привязываются к географической сетке координат.

    Сканерные съемки

    В настоящее время для съемок из космоса наиболее часто используются многоспектральные оптико-механические системы - сканеры, установленные на ИСЗ различного назначения. При помощи сканеров формируются изображения, состоящие из множества отдельных, последовательно получаемых элементов. Термин «сканирование» обозначает развертку изображения при помощи сканирующего элемента (качающегося или вращающегося зеркала), поэлементно просматривающего местность поперек движения носителя и посылающего лучистый поток в объектив и далее на точечный датчик, преобразующий световой сигнал в электрический. Этот электрический сигнал поступает на приемные станции по каналам связи. Изображение местности получают непрерывно на ленте, составленной из полос - сканов, сложенных отдельными элементами - пикселами. Сканерные изображения можно получить во всех спектральных диапазонах, но особенно эффективным является видимый и ИК-диапазоны. При съемке земной поверхности с помощью сканирующих систем формируется изображение, каждому элементу которого соответствует яркость излучения участка, находящегося в пределах мгновенного поля зрения. Сканерное изображение - упорядоченный пакет яркостных данных, переданных по радиоканалам на Землю, которые фиксируются на магнитную ленту (в цифровом виде) и затем могут быть преобразованы в кадровую форму.



    Различные методы сканирования поверхности Земли

    Важнейшей характеристикой сканера являются угол сканирования (обзора) и мгновенный угол зрения, от величины которого зависят ширина снимаемой полосы и разрешение. В зависимости от величины этих углов сканеры делят на точные и обзорные. У точных сканеров угол сканирования уменьшают до ±5°, а у обзорных увеличивают до ±50°. Величина разрешения при этом обратно пропорциональна ширине снимаемой полосы.

    Хорошо зарекомендовал себя сканер нового поколения, названный «тематическим картографом», которым были оснащены американские ИСЗ Landsat 5 и Landsat 7. Сканер типа «тематический картограф» работает в семи диапазонах с разрешением 30 м в видимом диапазоне спектра и 120 м в ИК-диапазоне. Этот сканер дает большой поток информации, обработка которой требует большего времени; в связи с чем замедляется скорость передачи изображения (число пикселов на снимках достигает более 36 млн. на каждом из каналов). Сканирующие устройства могут быть использованы не только для получения изображений Земли, но и для измерения радиации - сканирующие радиометры, и излучения - сканирующие спектрометры.

    Радарные съемки

    Радиолокационная (РЛ) или радарная съемка - важнейший вид дистанционных исследований. Используется в условиях, когда непосредственное наблюдение поверхности планет затруднено различными природными условиями: плотной облачностью, туманом и т.п. Она может проводиться в темное время суток, поскольку является активной.

    Особенности оптической и радарной съёмки

    Для радарной съемки обычно используются радиолокаторы бокового обзора (ЛБО), установленные на самолетах и ИСЗ. С помощью ЛБО радиолокационная съемка осуществляется в радиодиапазоне электромагнитного спектра. Сущность съемки заключается в посылке радиосигнала, отражающегося по нормали от изучаемого объекта и фиксируемого на приемнике, установленном на борту носителя. Радиосигнал вырабатывается специальным генератором. Время возвращения его в приемник зависит от расстояния до изучаемого объекта. Этот принцип работы радиолокатора, фиксирующего различное время прохождения зондирующего импульса до объекта и обратно, используется для получения РЛ-снимков. Изображение формируется бегущим по строке световым пятном. Чем дальше объект, тем больше времени надо на прохождение отражаемого сигнала до его фиксации электронно-лучевой трубкой, совмещенной со специальной кинокамерой.

    При дешифрировании радарных снимков следует учитывать тон изображения и его текстуру. Тоновые неоднородности РЛ-снимка зависят от литологических особенностей пород, размера их зернистости, устойчивости процессам выветривания. Тоновые неоднородности могут варьировать от черного до светлого цвета. Опыт работы с РЛ-снимками показал, что черный тон соответствует гладким поверхностям, где, как правило, происходит почти полное отражение посланного радиосигнала. Крупные реки всегда имеют черный тон. Текстурные неоднородности РЛ-изображения зависят от степени расчлененности рельефа и могут быть тонкосетчатыми, полосчатыми, массивными и др. Полосчатая текстура РЛ-изображения, например, характерна для горных районов, сложенных часто чередующимися слоями осадочных или метаморфических пород, массивная - для районов развития интрузивных образований. Особенно хорошо получается на РЛ-снимках гидросеть. Она дешифрируется лучше, чем на фотоснимках. Высокое разрешение РЛ-съемки в районах, покрытых густой растительностью, открывает широкие перспективы ее использования.

    Радарные системы бокового обзора с конца 70-х годов стали устанавливать на ИСЗ. Так, например, первый радиолокатор был установлен на американском спутнике "Сисат", предназначенном для изучения динамики океанических процессов. Позднее был сконструирован радар, испытанный во время полетов космического корабля "Шаттл". Информация, полученная с помощью этого радара, представляется в виде черно-белых и ложноцветных синтезированных фото-, телеизображений или записей на магнитную ленту. Разрешающая способность 40 м. Информация поддается числовой и аналоговой обработке, такой же, что и сканерные снимки системы Landsat. Это в значительной мере способствует получению высоких результатов дешифрирования. Во многих случаях РЛ-снимки оказываются геологически более информативными, чем снимки спутников Landsat или других оптических сенсоров. Наилучший результат достигается и при комплексном дешифрировании материалов того и другого видов. РЛ-снимки успешно используются для изучения трудно- или недоступных территорий Земли - пустынь и областей, расположенных в высоких широтах, а также поверхность других планет.

    Классичесими уже стали результаты картирования поверхности Венеры - планеты, покрытой мощным облачным слоем. Совершенствование РЛ-аппаратуры должно повлечь за собой дальнейшее повышение роли радиолокации в дистанционных исследованиях Земли, особенно при изучении ее геологического строения.

    Тепловые съемки

    Инфракрасная (ИК), или тепловая, съемка основана на выявлении тепловых аномалий путем фиксации теплового излучения объектов Земли, обусловленного эндогенным теплом или солнечным излучением. Она широко применяется в геологии. Температурные неоднородности поверхности Земли возникают в результате неодинакового нагрева различных ее участков. Инфракрасный диапазон спектра электромагнитных колебаний условно делится на три части (в мкм):

    ближний (0,74-1,35)

    средний (1,35-3,50)

    дальний (3,50-1000)

    Солнечное (внешнее) и эндогенное (внутреннее) тепло нагревает геологические объекты по-разному в зависимости от литологических свойств пород, тепловой инерции, влажности, альбедо и многих других причин.

    ИК-излучение, проходя через атмосферу, избирательно поглощается, в связи с чем тепловую съемку можно вести только в зоне расположения так называемых "окон прозрачности" - местах пропускания ИК-лучей. Опытным путем выделено четыре основных окна прозрачности (в мкм): 0,74-2,40; 3,40-4,20; 8,0-13,0; 30,0-80,0. Некоторые исследователи выделяют большее число окон прозрачности. в первом окне (до 0,84 мкм) используется отраженное солнечное излучение. Здесь можно применять специальные фотопленки и работать с красным фильтром. Съемка в этом диапазоне называется ИК-фотосъемкой.

    В других окнах прозрачности работают измерительные приборы - тепловизоры, преобразующие невидимое ИК-излучение в видимое с помощью электроннолучевых трубок, фиксируя тепловые аномалии. На ИК-изображениях светлыми тонами фиксируются участки с низкими температурами, темными - с относительно более высокими. Яркость тона прямо пропорциональна интенсивности тепловой аномалии. ИК-съемку можно проводить в ночное время. На ИК-снимках, полученных с ИСЗ, четко вырисовывается береговая линия, гидрографическая сеть, ледовая обстановка, тепловые неоднородности водной среды, вулканическая деятельность и т.п. ИК-снимки используются для составления тепловых карт Земли. Линейно-полосовые тепловые аномалии, выявляемые при ИК-съемке, интерпретируются как зоны разломов, а площадные и концентрические - как тектонические или орографические структуры. Например, наложенные впадины Средней Азии, выполненные рыхлыми кайнозойскими отложениями, на ИК-снимках дешифрируются как площадные аномалии повышенной интенсивности. Особенно ценна информация, полученная в районах активной вулканической деятельности.

    В настоящее время накоплен опыт использования ИК-съемки для изучения дна шельфа. Этим методом по разнице температурных аномалий поверхности воды получены данные о строении рельефа дна. При этом использован принцип, согласно которому при одинаковом облучении поверхности воды на более глубоких участках водных масс энергии на нагревание расходуется больше, чем на более мелких. В результате температура поверхности воды над более глубокими участками будет ниже, чем над мелкими. Этот принцип позволяет на ИК-изображениях выделять положительные и отрицательные формы рельефа, подводные долины, банки, гряды и т.п. ИК-съемка в настоящее время применяется для решения специальных задач, особенно при экологических исследованиях, поисках подземных вод и в инженерной геологии.

    Преимущества дистанционного зондирования

    Дистанционным зондированием называют получение информации об объектах без вхождения с ними в физический контакт. Однако это определение является слишком широким.

    Поэтому введем некоторые ограничения, позволяющие конкретизировать особенности понятия «дистанционное зондирование», и в частности, важного для обеспечения безопасности авиации понятия дистанционного зондирования атмосферы. Во-первых, предполагают, что информацию получают с помощью технических средств.

    Во-вторых, речь идет об объектах, находящихся на значительных расстояниях от технических средств, что принципиально отличает ДЗ от других научно-технических направлений, таких как неразрушающий контроль материалов и изделий, медицинская диагностика и т. п. Добавим, что ДЗ использует косвенные методы измерения.

    Дистанционное зондирование включает исследования атмосферы и земной поверхности, в последнее время развились и подповерхностные методы ДЗ. Применение методов и средств дистанционного неконтактного получения информации о состоянии и параметрах тропосферы способствует безопасности авиации.

    Главные преимущества ДЗ - это высокая скорость получения данных о больших объемах атмосферы (или о больших площадях земной поверхности), а также возможность получения информации об объектах, практически недоступных для исследования другими способами. С традиционными метеорологическими измерениями в верхней атмосфере, выполняемыми с помощью шаров-зондов, широко и систематически применяются сложные методы ДЗ.

    Дистанционное зондирование стоит довольно дорого, особенно космическое. Несмотря на это, сравнительный анализ затрат и получаемых результатов доказывает высокую экономическую эффективность зондирования. Кроме того, использование данных зондирования, в частности, метеорологических спутников, наземных и бортовых радиолокационных средств, сохранило тысячи человеческих жизней за счет предупреждения стихийных бедствий и избежания опасных метеорологических явлений. Поэтому научно-исследовательская. экспериментальная, конструкторская и оперативная деятельность в области ДЗ, которая интенсивно развивается в ведущих странах мира, является полностью оправданной.

    Объекты и применение дистанционного зондирования

    Основными объектами ДЗ являются:

      погода и климат (осадки, облака, ветер, турбулентность, излучения);

      элементы окружающей среды (аэрозоли, газы, электричество атмосферы, перенос, т. е. перераспределение в атмосфере той или иной субстанции);

      океаны и моря (морское волнение, течения, количество воды, лед);

      земная поверхность (растительность, геологические исследования, изучения ресурсов, высото-метрия).

    Информация, получаемая средствами ДЗ, необходима для многих отраслей науки, техники и экономики. Количество потенциальных потребителей этой информации постоянно растет.

    С целью обеспечения безопасности полетов ДЗ используется:

      метеорологией, климатологией и физикой атмосферы (оперативные данные для прогноза погоды, определения профиля температуры, давления и содержания водяного пара в атмосфере, измерения скорости ветра и т. п.);

      спутниковой навигацией, связью, в радиолокационных наблюдениях и радионавигации (эти области требуют данных об условиях распространения радиоволн, которые оперативно получаются средствами ДЗ);

      авиацией, например, прогноз метеоусловий в аэропортах и на авиатрассах, оперативное обнаружение опасных метеорологических явлений, таких как град, гроза, турбулентность, сдвиг ветра, микровзрыв и обледенение.

    Кроме того, важными являются такие области, в которых летательные аппараты используются в качестве носителей средств ДЗ:

      гидрология, включая оценку и управление водными ресурсами, прогнозирование таяния снегов, предупреждения о паводках;

      аграрные области (прогноз и управление погодой, контроль типа, распространения и состояния растительного покрова, построение карт типов грунтов, определение влажности, предупреждение градобитий, прогноз урожая);

      экология (контроль загрязнения атмосферы и земной поверхности);

      океанография (например, измерение температуры морской поверхности, исследования океанических течений и спектров морского волнения);

      гляциология (например, отображение распространения и движения ледовых щитов и морского льда, определения возможности морского судоходства в ледовых условиях);

      геология, геоморфология и геодезия (например, идентификация типа горных пород, локализация геологических дефектов и аномалий, измерение

      параметров Земли и наблюдение тектонического движения);

      топография и картография (в частности, получение точных данных о высоте и привязке их к данной системе координат, производство карт и внесение изменений в них);

      контроль стихийных бедствий (в том числе контроль объема паводков, предупреждение о песчаных и пылевых бурях, лавинах, оползнях, определение маршрутов лавин и т. п.);

      планирование в других технических приложениях (например, инвентаризация землепользования и контроль изменений, оценка земельных ресурсов, наблюдение за движением транспорта);

      военные применения (контроль передвижения техники и воинских формирований, оценка местности).

    Системы и методы дистанционного зондирования

    Классификация систем ДЗ основывается на привычных для специалистов по радиолокации отличиях между активными и пассивными системами. Активные системы облучают исследуемую среду электромагнитным излучением (ЭМИ), которое обеспечивает система ДЗ, т. е. в этом случае средство ДЗ генерирует электромагнитную энергию и излучает ее в направлении исследуемого объекта. Пассивные системы воспринимают ЭМИ от исследуемого объекта естественным образом. Это может быть, как собственное ЭМИ, возникающее в самом объекте зондирования, например, тепловое излучение, так и рассеянное ЭМИ какого-либо естественного внешнего источника, например, солнечного излучения. Преимущества и недостатки каждого из двух указанных типов систем ДЗ (активные и пассивные) определяются рядом факторов. Например, пассивная система практически неприменима в тех случаях, когда отсутствует достаточно интенсивное собственное излучение исследуемых объектов в заданном диапазоне длин волн. С другой стороны, активная система становится технически невыполнимой, если излучаемая мощность, необходимая для получения достаточного отраженного сигнала, оказывается слишком большой.

    В ряде случаев для получения необходимой информации желательно знать точные параметры излучаемого сигнала, чтобы обеспечить какие-то специальные возможности анализа, например, измерение доплеровского сдвига частоты отраженного сигнала для оценки движения цели по отношению датчика (приемника) или изменения поляризации отраженного сигнала относительно зондирующего сигнала. Как и любые информационно-измерительные системы, которые используют ЭМИ, системы ДЗ различаются по диапазонам частот электромагнитных колебаний, например, ультрафиолетовые, видимого света, инфракрасные, миллиметровые, сантиметровые, дециметровые.

    Рассмотрим ДЗ атмосферы, в частности, тропосферы - той части земной атмосферы, которая непосредственно прилегает к поверхности Земли. Тропосфера простирается до высот 10-15 км, а в тропических широтах - до 18 км. Использование ДЗ с целью метеорологического обеспечения безопасности полетов требует внимания к системам, которые рассматривают атмосферу как трехмерный, объемно распределенный объект, и позволяют получать профили атмосферы в разных направлениях зондирования.

    Объектами зондирования, или целями, могут быть флюктуации, которые естественно происходят в атмосфере, а также фиксированные объекты на определенном расстоянии от средства ДЗ. Важно понять суть разных видов взаимодействия между ЭМИ и атмосферой. Разные виды такого взаимодействия - это удобный способ классификации методов ДЗ. Они основываются на затухании, рассеянии и излучении электромагнитных колебаний объектами зондирования. Схемы основных процессов взаимодействия электромагнитных колебаний с атмосферными неоднородностями применительно к задачам ДЗ.

    В первом случае излучение от заданного известного источника (передатчика) поступает на вход приемника после того, как оно прошло через исследуемый объект. Оценивается величина ослабления излучения на трассе распространения от передатчика к приемнику, при этом предполагается, что величина потерь электромагнитной энергии при прохождении через объект связана со свойствами этого объекта. Причиной потерь может быть поглощение или комбинация поглощения и рассеяния, что лежит в основе получения информации об объекте. Много методов ДЗ по сути основаны на таком подходе.

    Во втором случае, когда источник сам является источником излучения, обычно возникает задача измерения инфракрасной или/и микроволновой эмиссии, что используется для получения информации о тепловой структуре атмосферы и других ее свойствах. Кроме того, такой подход характерен для исследования молниевого разряда на основе его собственного радиоизлучения и для обнаружения грозы на больших расстояниях.

    Третий случай состоит в использовании рассеяния электромагнитных колебаний атмосферным образованием для получения информации о нем. На свойстве рассеяния основаны различные способы ДЗ. Один из них характеризуется тем, что исследуемая среда освещается каким-то источником некогерентного излучения, например, солнечным светом или инфракрасным излучением, которое исходит от поверхности Земли, а датчик средства ДЗ принимает рассеянное объектом излучение. Другой - тем, что объект облучается специальным искусственным (когерентным или некогерентным) источником, например, лазером или источником с длиной волны от дециметров до миллиметров (как в случае радиолокатора). Это излучение рассеивается объектом, обнаруживается приемником и используется для извлечения информации о рассеивающем объекте.

    Заметим, что первый из рассмотренных случаев соответствует активной системе зондирования, второй - пассивной, а третий реализуется как в пассивном, так и в активном вариантах.

    Активная система ДЗ может быть моно-статической, когда передатчик и приемник средства ДЗ размещаются на одной позиции, бистатической, или даже мульти-статической, когда система состоит из одного или нескольких передатчиков и нескольких приемников, расположенных в разных позициях.

    Классификация не будет достаточно полной, если не указать основные технические средства ДЗ: радиолокаторы, радиометры, лидеры и другие устройства или системы, используемые в качестве датчиков ДЗ.

    Изучение атмосферы с помощью ДЗ включает использования приборов, устанавливаемых на искусственных спутниках Земли и орбитальных станциях, самолетах, ракетах, воздушных шарах, а также средствами, размещенными на земле. Чаще всего носителями средств ДЗ являются спутники, самолеты и платформы наземного базирования.

    Обратные задачи

    Задачи ДЗ - это обратные задачи, т. е. такие, при решении которых вынуждены идти от результата к причине. К ним относятся все задачи обработки и интерпретации данных наблюдений. Теория обратных задач - самостоятельная математическая дисциплина, а ДЗ атмосферы - лишь одно из научно-технических направлений, для которых теория обратных задач является важной. В прикладном аспекте необходимо хорошо понимать, как ЭМИ взаимодействует с исследуемыми атмосферными объектами, формируя сигналы, которые используются для получения информации об атмосфере. В идеальном случае между измеренным параметром сигнала и оцениваемой характеристикой атмосферы существует взаимно однозначное соответствие. Но в реальных ситуациях всегда возникают характерные для обратных задач проблемы.

    Рассмотрим простой пример, который относится к пассивному зондированию атмосферы. Предположим, что поглощающий газ в атмосфере характеризуется собственным излучением, зависящим от температуры газа. Это излучение воспринимается датчиком, расположенным на спутнике. Предположим также, что существует связь между длиной волны излучения и температурой, а температура зависит от высоты слоя атмосферы. Тогда знание взаимосвязи между интенсивностью излучения, длиной волны излучения и температурой газа дает способ оценки температуры атмосферного газа как функции длины волны и, следовательно, высоты. На самом деле ситуация намного сложнее по сравнению с описанным идеальным случаем. Излучение на заданной длине волны не исходит из одного слоя на соответствующей высоте, а распределено по толще атмосферы, поэтому нет взаимно однозначного соответствия между длиной волны и высотой, как это предполагалось для идеального случая, что вызывает размытость этой связи. Этот пример является типичным для многих обратных задач, где границы интегрирования зависят от особенностей конкретной задачи. Это уравнение известно, как интегральное уравнение Фредгольма первого рода. Оно характеризуется тем, что границы интеграла фиксированные, появляется только в подынтегральном выражении. Функция называется ядром или функцией ядра уравнения.

    Разные задачи ДЗ сводятся к уравнению или к подобным уравнениям. Для решения таких задач необходимо выполнить обратное преобразование, чтобы по результатам измерений g. получить распределение. Такие обратные задачи называются некорректными, или некорректно поставленными задачами. Их решение ассоциировано с преодолением трех следующих трудностей. В принципе решение некорректной задачи может оказаться математически несуществующим, неоднозначным или неустойчивым. Отсутствие решения

    С точки зрения ДЗ, опасные метеорологические явления (ОМЯ) можно рассматривать как объемно распределенные объекты, которые занимают определенные пространственные зоны в облачности или в безоблачной атмосфере (ясном небе). Физические признаки внешнего проявления ОМЯ, как правило, описываются параметрами, характеризующими интенсивность ОМЯ и которые в принципе можно измерять, например, параметры скорости ветра, напряженности электрического и магнитного полей, интенсивность осадков. Физические параметры ОМЯ рассмотрены.

    Районы атмосферы, в которых параметры, характеризующие интенсивность ОМЯ, превышают некоторый заданный уровень, называются зонами ОМЯ. Процесс обнаружения ОМЯ и отнесение их зон к определенным пространственным координатам в заданное время на основании результатов ДЗ называется локализацией зон ОМЯ.

    Таким образом, в процессе локализации средствами микроволнового ДЗ атмосферы обнаруживают зоны ОМЯ и определяют их местоположение в заданной системе координат. В ряде случаев можно оценить также степень интенсивности ОМЯ.

    Локализация опасных для полетов зон бортовыми радиолокационными средствами - это оперативное обнаружение и определение местоположения с помощью метео-навигационных радиолокаторов (МНРЛС) и других боровых устройств, которые могут быть сопряжены с МНРЛС.

    Рекомендуем почитать

    Наверх