Ядерные поры у высших эукариот: строение и свойства. П.А.Я, его строение и функции. строение ядерного порового комплекса. импор и экспорт белков через ядерные поры Ядерная пора строение и функции

География 13.04.2024
География

Ядро, его строение и биологическая роль.

Ядро состоит из 1)поверхн аппарата ядра (в нем выдлел: 2 мембраны, перинуклеарн пространств, поровые комплексы, ламину.) 2) кариоплазмы (нуклеоплазмы) 3) хроматина (в нём эухроматин и гетерохроматин) 4) ядрышка (грануляр и фибриляр компонент.)

Ядро – это структура клетки которая выполняет функцию хранения и передачи инф, а так же регулирует все жизненные процессы клетки. Ядро несёт в себе генетическую (наследственную) инф в виде ДНК. Ядра обычно имеют шаровидную или яйцевидную форму. Я. окружено ядерн оболочкой. Ядерная оболочка пронизана ядерными порами. Через них ядро обменивается веществами с цитоплазмой(внутр средой клетки). Наружная мембрана переходит в эндоплпзматич ретикулум и может быть усеяна рибосомами. Отношение размеров ядра и клетки зависит от функциональной активности клетки. Большинство клеток одноядерные. Двуядерными могут быть кардиомиоциты. Всегда двуядерны инфузории. В них характерен ядерный дуализм.(то есть ядра различ по строению и финкциям). Малое ядро (генеративное) – диплойдное. Оно обеспечивает только половой процесс у инфузорий. Большое (вегетативное) ядро полиплойдное. Оно регулирует все остальные жизненные процессы. Многоядерными бывают клетки некоторых простейших и клетки скелетной мускулатуры.

П.А.Я. или кариотека ) имеет микроскопическую толщину и поэтому виден в световой микроскоп. Поверхностный аппарат ядра включает:

а)ядерную оболочку, или кариолемму;. б)паровые комплексы; в)периферическую плотную пластинку (ППП), или ламину.

(1) Ядерная оболочка (кариолемма). состоит из 2 мембран - наружной и внутренней, разделён­ных перинукляеарным пространством. Обе мембраны имеют такое же жидкосто-мозаичное строе­ние, как и плазматическая мембрана, и различаются по набору белков. Среди этих белков имеются ферменты, пере­носчики и рецепторы. Наружная ядерная мембрана является продолжением мембран грЭПС и может быть усеяна рибосомами, на которых идёт синтез белка. Со стороны цитоплазмы наружная мембрана окружена сетью промежуточных (ви-ментиновых) фипаментов. Между наружной и внутренней мембранами находится перинуклеарное пространство -полость шириной 15-40 нм, содержимое которого сообщается с полостями каналов ЭПС. По составу перинуклеарное пространство близко к гиалоплазме и может содержать синтезированные рибосомами белки. Главная функция кариолеммы - изоляция гиалоплазмы от кариоплазмы. Специальные белки ядерных мембран, расположенные в облас­ти ядерных пор, осуществляют транспортную функцию. Ядерная оболочка пронизана ядерными порами, через которые осуществляется связь кариоплазмы и гиалоплазмы. Для регуляции такой связи в порах находятся (2) поровые комплексы. Они занимают 3-35% поверхности ядер­ной оболочки. Число ядерных пор с поровыми комплексами является изменчивой величиной и зависит от активности ядра. В области ядерных пор наружная и внутренняя ядерные мембраны сливаются. Со­вокупность структур, связанных с ядерной порой, называется комплексом ядерной поры. Типичный поровый ком­плекс представляет собой сложную белковую структуру - содержит более 1000 молекул белка. В центре поры рас­положена центральная белковая глобула (гранула), от которой по радиусу отходят тонкие фибриллы к перифериче­ским белковым глобулам, образуя диафрагму поры. По периферии ядерной поры находятся две параллельные коль­цевые структуры диаметром 80-120 нм (по одному с каждой поверхности кариолеммы), каждое из которых образо­вано 8 белковыми гранулами (глобулами).



Белковые глобулы перового комплекса подразделяются на центральные и пе­риферические . С помощью периферических глобул осуществляется транспорт макромолекул из ядра в гиалоплазму. (фиксируются в мем­бране специальным интегральным белком. От этих гранул к центру сходятся белковые фибриллы, формирующие пе­регородку - диафрагму поры)

В нем участвуют специальные белки периферических глобул - нуклеопорины. В периферических глобулах имеется особый белок - переносчик молекул т-РНК

Центральная глобула специализируется на транспорте и-РНК из ядра в гиалопдазму. В её составе имеются ферменты, участвующее в химической модификации иРНК - ее процессинге.

Гранулы поровых комплексов структурно связаны с белками ядерной ламины, которая участвует в их организации

Функции комплекса ядерной поры:

1. Обеспечение регуляции избирательного транспорта в-в между цитоплазмой и ядром.

2. Активный перенос в ядро белков

3. Перенос в цитоплазму субъединиц рибосом

(3) ППП или ламина

слой толщиной 80-300 нм. прилегает изнутри к внутренней ядерной мембране. Внутренняя ядерная мембрана гладкая, ее интегральные белки связаны с ламиной (периферической плотной пластинкой). Ламина состоит из специальных переплетенных белков-ламинов, образующих периферический кариоскелет. Белки-ламины относятся к классу промежуточных филаментов (скелет­ных фибрилл). У млекопитающих известно 4 вида этих белков - это ломимы А, В, В 2 и С. Эти белки поступают в яд­ро из цитоплазмы. Ламины разных видов взаимодействуют между сбой и образуют белковую сеть под внутренней мембраной ядерной оболочки. С помощью ламинов «В» ППП соединяется со спец интеграл белкомядерн оболочки. С ППП взаимодействуют и белки приферич голобул «внутр кольца» порового комплекса. К ламину «А» присоед теломерн участки хромосом.

Функции ламины: 1) поддерд форму ядра. (даже есл бое мембраны разруш, то ядро за счет ламины сохр свою форму и поровые комп-сы ост на своём месте.

2) служит компонентом кариоскелета

3) участв в сборке ядерн оболочки (формирование кариоллемы) при делен клетки.

4) в интерфазном ядре к ламине прикрепл хроматин. таким образом ламина обеспеч функцию фиксации хроматина в ядре (обеспеч упорядочн укладку хроматина, участвует в пространственной организации хроматина в интерфазном ядре). Ламин «А» взаимодейств с теломерными участками хромосом.

5) обеспеч структур организацию поровых комплексов.

импорт и экспор белков.

В ядро через ядерные поры поступают: синтезированные цитоплазматическими рибосомами белки-ферменты, которые участвуют в процессах репликации и репарации (восстановления повреждений в ДНК); белки-ферменты, участвующие в процессе транскрипции; белки-репрессоры, которые регулируют процесс транскрипции; белки-гистоны.(которые связаны с молекулой ДНК и образуют хроматин); белки, входящие в состав субъединиц рибосом: белки ядерного матрикса, образующие кариоскелет; нуклеотиды; ионы минеральных солей, в частности, ионы Са и Mg .

Из ядра в цитоплазму выходят и-РНК. т-РНК и субъединицы рибосом, которые представляют собой рибонуклеопротеидные частицы (р-РНК, связанные с белками).

5. Химический состав и структурная организация хроматина. уровни компактизации. хромосомы чел их строен и классификация.

В ядре клеток мелкие зернышки и глыбки материала, окрашиваются основными красителями.

Хроматин представляет собой дезоксирибонуклеопротеид (ДНП) и состоит из ДНК, соединённой с белка-ми-гистонами или негистоновыми белками. Гистоны и ДНК объединены в структуры, которые называются нуклеосомами. Хроматин соответствует хромосомам, которые в интерфазном ядре представлены длинными перекру­ченными нитями и неразличимы как индивидуальные структуры. Выраженность спирализации каждой из хромо­сом неодинакова по их длине. Реализацию генетической информации осуществляют деспирализованные участки хромосом.

классификация хроматина:

1) эухроматин (активный деспирализованный. на нем происход считывание инф (транскрипция). в ядре выявляется как более светлые участки ближе к центру ядра) Предполагается, что в нем сосредоточена та ДНК, которая в интерфазе генетически активна. Эухроматин соответствует сегментам хромосом, которые деспирализованы и от­крыты для транскрипции.

2) гетерохроматин (нерабочий спирализованный, конденсированный, более компактный В ядре выявляется в виде глыбок на периферии.) делится на: конститутивный (всегда неактивен, никогда не переходит в эухроматин) и Факультативный (при определён условиях или на определен стадиях иммунного цикла может переходить в эухроматин). располагается ближе к оболочке ядра, более компактный. Примером скопления факульт гетерохроматина является тельце Барра - инактивированная Х-хромосома у самок млекопитающих, которая в интерфазе плотно скручена и неактивна.

Таким образом, по морфологическим признакам ядра (по соотношению содержания эу- и гетерохромати­на) можно оценить активность процессов транскрипции, а, следовательно, синтетической функции клетки.

Хроматин и хромосомы представляют собой дезоксирибонуклеопротеиды (ДНП), но хроматин - это рас­крученное, а хромосомы - скрученное состояние. Хромосом в интерфазном ядре нет, хромосомы появляются при разрушении ядерной оболочки (во время деления).

Строение хромосом:

хромосомы - наиболее упакованное состояние хроматина.

В хромосомах различают первичную перетяжку (центромеру), разделяющую хромосому на два плеча. Пер­вичная перетяжка - наименее спирализованная часть хромосомы, к ней во время деления клетки присоединяются нити веретена деления. На некоторых хромосомах есть глубокие вторичные перетяжки, отделяющие небольшие участки хромосом, называемые спутниками. В области вторичных перетяжек находятся гены, кодирующие ин­формацию об р-РНК, поэтому вторичные перетяжки хромосом называются ядрышковыми организаторами.

В зависимости от места расположения центромеры различают три типа хромосом:

1) метацентрические (имеют плечи равной или почтиравной величины);

2) субметацентрические (имеют плечи неравной величины);

3) акроцентрические (имеют палочковидную форму с коротким, почти незаметным вторым плечом);

Концы плеч хромосом называются теломерами

Уровни компаюпизации хроматина:

1. Нуклеосомный - Два с половиной витка двойной спирали ДНК (в 146-200 пар нуклеотидов) наматываются снаружи на белковый кор, образуя нуклеосому. Ка­ждый гистон представлен двумя молекулами. ДНК наматывается на кор снаружи, образуя два с половиной витка. Участок ДНК между нуклеосомами называется линкером и имеет протяжбенность 50-60 пар нуклеотидов. Толщина нуклеосомной нити составляет 8-11 нм.

2. Нуклеомерный. Нуклеосомная структура закручивается, обра­зуя суперспираль. В её образовании принимает участие ещё один гистоновый белок HI, лежащий между нуклеосомами и связанный с линкером. К каждому линкеру присоединяется 1 молекула гистона HI. Молекулы HI в комплексе с линкерами взаимодействуют меж­ду собой и вызывают суперспирализацию нуклеосомной фибриллы.

В результате образуется хроматиновая фибрил­ла, толщина которой составляет 30 нм (ДНК компактизирована в 40 раз). Суперспирализация происходит двумя способами. 1) нуклеосомная фибрилла может образовывать спираль второго порядка, которая имеет форму соле­ноида; 2) 8-10 нуклеосом образуют крупную компактную структуру - нуклеомеру. Этот уровень не допускает синтеза РНК с нуклеомерной ДНК (транскрипция не происходит).

3. Хромомерный (петельная структура). Хроматиновая фибрилла образует петли, кото­рые сцепляются между собой с помощью осо­бых негистоновых белков, либо петельные цен­тры - хромомеры. Толщина 300 нм.

4. Хромонемный - образуется в результате сближения хромомеров по длине. Хромонема содержит одну гигантскую молекулу ДНК в комплексе с белками, т.е. фибриллу дезокси-рибонуклеопротеина - ДНП (400 нм).

5. Хроматидный - хромонема складывается несколько раз, образуя тело хроматиды (700 нм). После репликации ДНК хромосома со­держит 2 хроматиды.

6. Хромосомный (1400 нм). Состоит из двух хроматид. Хроматиды соединены центромерой. При делении клетки хроматиды расходятся, по­падая в разные дочерние клетки.

хромосомы человека

Кариоти́п - совокупность признаков (число, размеры, форма и т.д.) полного набора хромосом, присущий клеткам данного биологического вида (видовой кариотип ), данного организма (индивидуальный кариотип ) или линии (клона) клеток.

Для процедуры определения кариотипа могут быть использованы любые популяции делящихся клеток, для определения человеческого кариотипа используется либо одноядерные лейкоциты, извлечённые из пробы крови, деление которых провоцируется добавлением митогенов, либо культуры клеток, интенсивно делящихся в норме (фибробласты кожи, клетки костного мозга).

кариотип – диплойдный набор хромосом, свойтвенный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определённым числом и строением хромосом.

Хромосомный набор большинства клеток - диплоидный (2п) - это значит, что каждая хромосома имеет пару, т.е. гомологичную хромосому. Обычно диплоидный (2п) набор хромосом образуется в момент оплодотворения (одна из пары хромосом от отца, другая от матери). Некоторые клетки триплоидны (Зп), например клетки эндосперма.

Изменение числа хромосом в кариотипе человека может привести к различным заболеваниям. Наиболее частым хромосомным заболеванием у человека является синдром Дауна , обусловленный трисомией (к паре нормальных хромосом прибавляется еще одна такая же, лишняя) по 21-й хромосоме. Встречается этот синдром с частотой 1-2 на 1000.

Известны трисомии по 13-й хромосоме - Синдром Патау , а также по 18-й хромосоме - синдром Эдвардса , при которых жизнеспособность новорожденных резко снижена. Они гибнут в первые месяцы жизни из-за множественных пороков развития.
Достаточно часто у человека встречается изменение числа половых хромосом. Среди них известна моносомия Х (из пары хромосом присутствует только одна (Х0)) - это синдром Шерешевского-Тернера . Реже встречается трисомия Х и синдром Клайнфельтера (ХХУ, ХХХУ, ХУУ и т.д.)

6. Гиалоплазма. Органеллы, их классификация. Биологические мембраны.

гиалоплазма - часть цитоплазмы животных и растительных клеток, не содержащая структур, различимых в световом микроскопе.

Гиалоплазма (hyaloplasma; от греч. hyalinos - прозрачный) составляет примерно 53-55 % от общего объема цитоплазмы (cytoplasma), образуя гомогенную массу сложного состава. В гиалоплазме присутствуют белки, полисахариды, нуклеиновые кислоты, ферменты. При участии рибосом в гиалоплазме синте­зируются белки, происходят различные реакции промежуточно­го обмена. В гиалоплазме располагаются также органеллы, включения и клеточное ядро.

Основная роль гиалоплазмы – объединение всех клеточных структур в отношении их химического взаимодействия и обеспечения транспортных биохимических процессов.

Органеллы (organellae) являются обязательными микрострук­турами для всех клеток, выполняющими определенные жизнен­но важные функции. Различают мембранные и немембранные ор­ганеллы .

К мембранным органеллам , отграниченным от окру­жающей их гиалоплазмы мембранами, относятся эндоплазмати­ческая сеть, комплекс Гольджи, лизосомы, пероксисомы, митохондрии.

Эндоплазматическая сеть пред­ставляет собой единую непрерывную структуру, образованную системой цистерн, трубочек и уплощенных мешочков. На элек­тронных микрофотографиях различают зернистую (шерохова­тую, гранулярную) и незернистую (гладкую, агранулярную) эндо­плазматическую сеть. Внешняя сторона зернистой сети покрыта рибосомами, незернистая лишена рибосом. Зернистая эндо­плазматическая сеть синтезирует (на рибосомах) и транспорти­рует белки. Незернистая сеть синтезирует липиды и углеводы и участвует в их обмене (например, стероидные гормоны в корковом веществе надпочечников и клетках Лейдига (сустеноцитах) яичек; гликоген - в клетках печени). Одной из важнейших функций эндоплазматической сети является синтез мембран­ных белков и липидов для всех клеточных органелл.

комплекс Гольджи представляет собой совокупность ме­шочков, пузырьков, цистерн, трубочек, пластинок, ограничен­ных биологической мембраной. Элементы комплекса Гольджи соединены между собой узкими каналами. В структурах ком­плекса Гольджи происходят синтез и накопление полисахари­дов, белково-углеводных комплексов, которые выводятся из клеток. Так образуются секреторные гранулы. Комплекс Гольд­жи имеется во всех клетках человека, кроме эритроцитов и ро­говых чешуек эпидермиса. В большинстве клеток комплекс Гольджи расположен вокруг или вблизи ядра, в экзокринных клетках - над ядром, в апикальной части клетки. Внутренняя выпуклая поверхность структур комплекса Гольджи обращена в сторону эндоплазматической сети, а внешняя, вогнутая, - к цитоплазме.

Мембраны комплекса Гольджи образованы зернистой эндо­плазматической сетью и переносятся транспортными пузырька­ми. От внешней стороны комплекса Гольджи постоянно отпо­чковываются секреторные пузырьки, а мембраны его цистерн постоянно обновляются. Секреторные пузырьки поставляют мембранный материал для клеточной мембраны и гликокалик­са. Таким образом обеспечивается обновление плазматической мембраны.

Лизосомы представляют собой пузырьки диамет­ром 0,2-0,5 мкм, содержащие около 50 видов различных гидро­литических ферментов (протеазы, липазы, фосфолипазы, нук­леазы, гликозидазы, фосфатазы). Лизосомальные ферменты синтезируются на рибосомах зернистой эндоплазматической сети, откуда переносятся транспортными пузырьками в ком­плекс Гольджи. От пузырьков комплекса Гольджи отпочковыва­ются первичные лизосомы. В лизосомах поддерживается кислая среда, ее рН колеблется от 3,5 до 5,0. Мембраны лизосом устой­чивы к заключенным в них ферментам и предохраняют цито­плазму от их действия. Нарушение проницаемости лизосомаль­ной мембраны приводит к активации ферментов и тяжелым по­вреждениям клетки вплоть до ее гибели.

Во вторичных (зрелых) лизосомах (фаголизосомах) происхо­дит переваривание биополимеров до мономеров. Последние транспортируются через лизосомальную мембрану в гиалоплаз­му клетки. Непереваренные вещества остаются в лизосоме, в результате чего лизосома превращается в так называемое оста­точное тельце высокой электронной плотности.

Митохондрии (mitochondrii), являющиеся «энергетическими станциями клетки», участвуют в процессах клеточного дыхания и преобразования энергии в формы, доступные для использова­ния клеткой. Их основные функции - окисление органических веществ и синтез аденозинтрифосфорной кислоты (АТФ). Много крупных ми­тохондрий в кардиомиоцитах, мышечных волокнах диафрагмы. Они расположены группами между миофибриллами, окружены гранулами гликогена и элементами незернистой эндоплазмати­ческой сети. Митохондрии являются органеллами с двойными мембранами (толщина каждой около 7 нм). Между наружной и внутренней митохондриальными мембранами расположено меж­мембранное пространство шириной 10-20 нм.

К немембранным органоидам относятся клеточный центр эукариотических клеток и рибосомы, имеющиеся в цитоплазме как эу- , так и прокариотических клеток.

Рибосома - это округлая рибонуклеопротеиновая частица диа­метром 20-30 нм. Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (ин­формационной) РНК (мРНК). Одна молекула мРНК обычно объ­единяет несколько рибосом наподобие нитки бус. Такую структуру называют полисомой. Полисомы свободно располагаются в основ­ном веществе цитоплазмы или прикреплены к мембранам шерохо­ватой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка.

70S - рибосомы обнаруживаются у прокариот и в хлоропластах и митохондриях эукариот. 8OS-рибосомы, несколько более крупные, находятся в цитоплазме эукариот. В процессе синтеза белка рибосомы дви­жутся вдоль мРНК. Процесс идет более эффективно, если вдоль мРНК движется не одна, а несколько рибосом. Такие цепи рибосом на мРНК называют полирибосомами, или полисомами.

МЕМБРАНЫ:

все мембраны образуют липопротеидные плёнки; имеют двойной слой липидов.

В составе мембран до 20% воды. липиды.

Мембраны состоят из липидов трех классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придает мембране жесткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жесткие и хрупкие.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднен. Различается состав и ориентация мембранных белков.

Одна из важнейших функций биомембраны - барьерная. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов.

Еще одно важное свойство биомембраны - избирательная проницаемость.

Ядерные поры , или ядерные поровые комплексы - крупные белковые комплексы, пронизывающие ядерную мембрану и осуществляющие транспорт макромолекул между цитоплазмой и ядром клетки . Переход молекул из ядра в цитоплазму и в обратном направлении называется ядерно-цитоплазматическим транспортом.

Реконструкция ядерной поры.

Ядерные поровые комплексы (NPC) устроены сходным образом у всех исследованных на сегодняшний день организмов. Они образованы множеством копий примерно 30 разных белков-нуклеопоринов .

По данным электронной микроскопии, ядерные поры в поперечном сечении имеют форму «восьмиспицевого тележного колеса », то есть имеют ось симметрии восьмого порядка. Эти данные подтверждает тот факт, что молекулы нуклеопоринов присутствуют в составе ядерной поры в количестве, кратном восьми. Проницаемый для молекул канал располагается в центре структуры. Ядерные поровые комплексы заякорены на ядерной оболочке с помощью трансмембранной части , от которой к просвету канала обращены структуры, получившие название спиц (spokes), по аналогии со спицами тележного колеса. Эта коровая часть поры , построенная из восьми доменов, с цитоплазматической и ядерной сторон ограничена соответственно цитоплазматическим и ядерным кольцами. К ядерному кольцу прикреплены белковые, направленные внутрь ядра, тяжи (ядерные филаменты), к концам которых крепится терминальное кольцо . Вся эта структура носит название ядерной корзины . К цитоплазматическому кольцу также прикреплены направленные в цитоплазму тяжи - цитоплазматические филаменты. В центре ядерной поры видна электрон-плотная частица, «втулка» или транспортёр .

Нуклепорины , белки, из которых построены ядерные поры, делят на три подгруппы.

  • К первой относят трансмембранные белки, заякоривающие комплекс в ядерной оболочке.
  • Нуклепорины второй группы содержат характерный аминокислотный мотив - несколько раз повторенные FG, FXFG или GLFG - последовательности (так называемые FG-повторы, где F - фенилаланин, G - глицин, L - лейцин, X - любая аминокислота). Функция FG-повторов, по-видимому, заключается в связывании транспортных факторов, необходимых для осуществления ядерно-цитоплазматического транспорта.
  • Белки третьей подгруппы не имеют ни мембранных доменов, ни FG- повторов, наиболее консервативны среди всех нуклеопоринов, их роль, по-видимому, заключается в обеспечении связывания FG-содержащих нуклепоринов с трансмембранными.

Нуклеопорины также отличаются по своей мобильности в составе ядерной поры. Некоторые белки связаны с конкретной порой на протяжении всего клеточного цикла, в то время как другие полностью обновляются всего за несколько минут.

Количество ядерных пор на одно ядро может колебаться от 190 у дрожжей, 3000-5000 в клетках человека, до 50 млн в зрелых ооцитах шпорцевой лягушки. Этот показатель может также варьировать в зависимости от типа клетки, гормонального статуса и стадии клеточного цикла. Например, в клетках позвоночных количество ядерных пор удваивается на протяжении S фазы, одновременно с удвоением хромосом. При разборке ядерной оболочки во время митоза ядерные поры позвоночных распадаются на субкомплексы с массами около миллиона дальтон. Показано, что разборка ядерного порового комплекса инициируется циклин B-зависимой киназой, фосфорилирующей нуклеопорины. После завершения клеточного деления ядерные поры собираются de novo. Ядерные поры интерфазного ядра перемещаются большими массивами, а не независимо друг от друга, причем эти перемещения происходят синхронно с перемещениями ядерной ламины. Это служит доказательством того, что ядерные поры механически связаны между собой и формируют единую систему.

Ядерные поры – гигантские макромолекулярные комплексы, которые обеспечивают активный обмен белков и рибонуклеопротеидов между ядром и цитоплазмой. Ядерный поровый комплекс (ЯПК) формирует цилиндр, приблизительно 1200 Ǻ в диаметре и 500 Ǻ толщиной и имеет восьмиугольную симметрию. ЯПК состоит из 100-200 белков; он имеет массу 124х106 дальтон, что примерно в 30 раз больше массы рибосомы.

Этот комплекс – основные ворота для веществ, которые постоянно перемещаются внутрь ядра и из него. Например, матричная РНК (мРНК), субъединицы рибосом, гистоны, рибосомные белки, факторы транскрипции, ионы и мелкие молекулы быстро обмениваются между ядром и полостью эндоплазматического ретикулума или цитозолем.

Механизм ядерного импорта и экспорта

Перемещение молекул из ядра и в него происходит путем активного транспорта, пассивной диффузии или путем специальной ядерной локализации, которая идет посредством сигнальной последовательности определенных белков. Пассивная диффузия и активный транспорт происходят через ядерный поровый комплекс. Мелкие молекулы и ионы (<9кДа) диффундируют через водный канал ЯПК, около 10нм в диаметре. Более крупные молекулы (>9кДа) перемещаются путем активного транспорта с вовлечением ядерного сигнала, а также по энергозависимому механизму.

Ядерный локализационный сигнал.

Роль импортина.

Белки, транспортируемые в ядро, несут ядерный локализационный сигнал (ЯЛС), который содержит значительно обогащенный промежуток из пяти или шести основных аминокислот. Пример- пролин-пролин-лизин-лизин- лизин- лизин-аланин- лизин-валин (Р-Р-К-К-К-К-А-К-V).

Группы основных аминокислот ЯЛС могут локализоваться в любом месте белка. Более того, ядерный локализационный сигнал не изменяется при транслокационных преобразованиях. Особое внимание привлекает тот факт, что 60 кДа белок импортин связывается с ЯЛС, инициирует и поддерживает импорт белков. В ядерном импорте также участвуют цитоплазматические факторы.

Растворение ядра и его восстановление

Интерфазные ядра полностью собраны вместе с комплексами пор. Ядерная пластина (ламина) – сетчая структура специальных промежуточных филаментов - формирует волосковую сетеподобную структуру, которая связана с липопротеиновым комплексом внутренней ядерной мембраны.

При вступлении клетки в начало профазы цитозольные киназы фосфорилируют субъединицы ядерных ламин. После фосфорилирования сетеподобная структура разрушается. Затем липопротеиновый компонент внутренней ядерной мембраны распадается на мелкие везикулы, так же как и наружная ядерная мембрана, которая состыкована с ЭР. Затем содержимое ядра распространяется в цитозоле.



Восстановление ядерной оболочки начинается в поздней анафазе, в тот момент, когда цитоплазматические фосфатазы начинают удаление фосфатных остатков из ядерных ламин. Эти белки начинают реполимеризоваться на поверхности конденсированных хромосом. В то же время везикулы, образовавшиеся из внутренней ядерной мембраны, начинают сливаться и формируют оболочку вокруг хромосом. К концу поздней телофазы происходит окончательное слияние внутренней ядерной мембраны. Эти слитые мембраны и дефосфорилированные ламины формируют сетевидную структуру на внутренней поверхности ядерной мембраны.

Митохондрии

Общая структура и функции

Митохондрии – это окруженные двойной мембраной органеллы, которые выполняют функцию метаболического центра клетки. Митохондрии являются местом синтеза аденозинтрифосфата (АТФ). Этот процесс требует участия многих ферментов, большинство из которых поступает из цитозоля.

Процесс импорта ферментов очень сложен и включает несколько этапов. Предполагается, что митохондрии – результат эволюции организмов, которые внедрились в примитивную прокариотическую клетку и сформировали симбиотические отношения с хозяином.



Признаки Значение
Происхождение Считается, что митохондрии произошли врезультате эволюции от орагнизмов, которые внедрились в примитивную прокариотическую клетку и стали симбиотами с ней.
Форма Эти орагнеллы могут принимать различные морфологические формы. Некоторые из них имеют сферическую форму, другие лентовидную.
Митохондриальная ДНК Митохондриальная ДНК реплицируется в интерфазе, и этот процесс не синхронизирован с репликацией ДНК в ядре. Митохондриальная ДНК отличается от ядерной ДНК и кодирует особые митохондриальные гены.
Синтез белка Количество транслируемых с митохондриальной мРНК белков ограничено; они формируют субъединицы крупных ферментных комплексов. Митохондрии имеют функционирующие рибосомы, переводящие информацию митохондриальной ДНК в белки, используемые в органелле.
Клеточное деление Во время клеточного цикла митохондрии один раз делятся надвое, образуя при этом перетяжку. Перетяжка деления развивается, начиная с внутренней митохондриальной мембраны.

Митохондриальная ДНК

В отличие от других орагнелл клетки, митохондрии обладают собственной ДНК, которая отличается от ядерной ДНК и кодирует особые митохондриальные гены. Свойства митохондриальной ДНК:

1) небольшая и содержит около 16,5 кб, то есть приблизительно в 105 раз меньше, чем ДНК, локализованная в ядре;

2) кольцевая и кодирует 2 рибосомные РНК, 22 транспортных РНК (тРНК) и 13 белков.

Генетический код митохондрий, определяющий отдельные аминокислоты, немного отличается от кода ядерной ДНК. Митохондриальный код, например, обладает измененными стоп-кодонами.

Эта органелла обладает функционирующими рибосомами, которые синтезируют белки, используемые в органелле и кодируемые митохондриальной мРНК белка, ограничено и формирует субъединицы более крупных ферментных комплексов. Митохондрии могут принимать различную форму. Обычно митохондрия делится, по крайней мере, один раз в течение клеточного цикла после репликации ее ДНК, которая происходит во время интерфазы. Эта репликация не связана с S-фазой клетки. Деление митохондрии происходит посредством перетяжки на две, которая начинается с образования кольцевой бороздки на внутренней митохондриальной мембране.

Ядерная оболочка клеток млекопитающих содержит 3-4 тысячи пор (примерно 10 пор на 1 квадратный мкм). Через ядерные поры происходит обмен веществами между ядром и цитоплазмой. Действительно, РНК, синтезируемые в ядре, а также рибосомные субъединицы и белки, содержащие сигналы ядерного экспорта, транспортируются через ядерные поры в цитоплазму, а гистоны, компоненты репликативной системы, многие другие белки импортируются через ядерные поры из цитоплазмы в ядро. Поры окружены большими кольцевыми структурами, называемыми поровыми комплексами (их внутренний диаметр составляет приблизительно 80 нм, а мол. масса -50-100 млн. Каждый комплекс образован набором больших белковых гранул, сгруппированных в октагональную структуру. Поровой комплекс пронизывает двойную мембрану, связывая по окружности поры липидный бислой внутренней и внешней мембран в единое целое. "Дыра" в центре каждого комплекса (ядерная пора) представляет собой водный канал, сквозь который водорастворимые молекулы курсируют между ядром и цитоплазмой. Ядерный поровой комплекс содержит заполненный водой цилиндрический канал диаметром около 9 нм. Большие ядерные белки взаимодействуют с белками-рецепторами, расположенными на границе ядерных пор, и эти рецепторы активно переносят белки в ядро, увеличивая канал поры.

Количество ядерных пор зависит от типа клетки, стадии клеточного цикла и конкретной гормональной ситуации. Для ядерной поры характерна симметрия восьмого порядка, поэтому многие белки ядерной поры представлены в ее составе в количестве, кратном восьми. В электронный микроскоп видны выпуклые кольца. Кольцо, находящееся с ядерной стороны, несет структуру, называемую корзиной (basket). Это образование состоит из обращенных в нуклеоплазму фибрилл и прикрепленного к ним терминального кольца. К просвету канала обращены восемь симметричных образований (spoke complex). В центре комплекса виден вход в канал ядерной поры. Иногда в канале оказывается видна электронноплотная гранула. Некоторые исследователи полагают, что это какой-то транспортирующийся комплекс в момент пересечения ядерной мембраны. Другие считают, что эта структура является функциональной деталью ядерной поры. На основании этого последнего предположения была даже выдвинута не подтвердившаяся впоследствии гипотеза, согласно которой ядерная пора содержит не один, а восемь проницаемых каналов. Молекулы массой менее 5 кДа, проходят через ядерную пору свободно, и равновесие между ядерной и цитоплазматической концентрацией устанавливается за секунды. Для белков массой 17 кДа этот процесс занимает 2 минуты, белков массой 44 кДа (приблизительно 6 нм) - 30 минут. Белки массой более 60 кДа, по-видимому, вообще не могут пассивно проходить через ядерные поры. Проницаемый для гидрофильных макромолекул канал, через который происходит как активный, так и пассивный транспорт, в ядерной поре один, и он, по всей видимости, расположен в центре комплекса. Существуют специальные механизмы транспорта макромолекул внутрь ядра и из ядра в цитоплазму, однако до сих пор о них мало что известно.

Статьи и публикации:

Секвенирование ДНК
Для определения нуклеотидной последовательности в ДНК были разработаны два метода: 1. Метод с использованием "минус- и плюс"-систем ("минус-плюс"-метод, метод Сенгера). 2. Метод с использованием диметилсульфата и гид...

Естественный отбор
Генетическая структура (генофонд как система) популяции, имеющая соответствующую норму реакции особей и обусловливающая фенотипические особенности, влияющие на популяционную структуру и, в итоге, определяют ее приспособленность к конкретн...

Питание
Питание человека – это процесс доставки и усвоения питательных веществ в организм для обеспечения его энергетических и пластических потребностей, а также потребностей в воде, витаминах, минеральных веществах. Кроме этого питание, удовлетв...

Ядерные поры являются одним из наиболее важных внутриклеточных компонентов, так как они участвуют в молекулярном транспорте. Несмотря на достижения в биологических исследованиях, не все вопросы, касающиеся этих структур, изучены полностью. Некоторые ученые считают, что по значимости функций и сложности строения комплекс ядерных пор можно отнести к органеллам клеток.

Ядерная оболочка

Характерной особенностью является наличие ядра, которое окружено оболочкой, отделяющей его от цитоплазмы. Мембрана состоит из двух слоев - внутреннего и наружного, соединенных между собой с помощью большого количества пор.

Значение ядерной оболочки очень велико - она позволяет отграничить процессы синтеза белка и нуклеиновых кислот, необходимых для регулирования функциональной активности генов. Мембрана управляет процессом транспортировки веществ внутрь, в цитоплазму, и в обратном направлении. Также она является скелетной структурой, поддерживающей форму ядра.

Между наружной и внутренней мембраной находится перинуклеарное пространство, ширина которого составляет 20-40 нм. Внешне ядерная оболочка выглядит как двухслойный мешок. Наличие пор в ее строении является существенным отличием данной структуры от аналогичных, имеющихся у митохондрий и пластид.

Строение ядерных пор

Каналы представляют собой перфорации диаметром около 100 нм, проходящие через всю ядерную оболочку. В поперечном сечении они характеризуются формой многоугольника, обладающего симметрией восьмого порядка. Проницаемый для веществ канал находится в центре. Он заполнен сложно организованными глобулярными (в виде клубка) и фибриллярными (в форме закрученной нити) структурами, образующими центральную гранулу-«пробку» (или транспортер). На рисунке ниже можно наглядно изучить, что представляет собой ядерная пора.

Микроскопическое исследование данных структур показывает, что они имеют кольчатое строение. Фибриллярные выросты простираются как наружу, в цитоплазму, так и внутрь, в сторону ядра (филаменты). Последние образуют своеобразную корзинку (в зарубежной литературе называемую «баскет»). В пассивной поре фибриллы корзины закрывают канал, а в активной - формируют дополнительное образование диаметром порядка 50 нм. Кольцо со стороны цитоплазмы состоит из 8 гранул, соединенных между собой, как бусы на нитке.

Совокупность этих перфораций в оболочке ядра носит название комплекса ядерных пор. Тем самым биологи подчеркивают взаимосвязь между собой отдельных отверстий, работающих как единый слаженный механизм.

Внешнее кольцо связано с центральным транспортером. У низших эукариотов (лишайники и другие) нет цитоплазматического и нуклеоплазматического колец.

Особенности структуры

Строение и функции ядерных пор имеют следующие особенности:

  • Каналы представляют собой многочисленные копии порядка 30-50 нуклеопоринов (а всего - около 1000 белков).
  • Масса комплексов находится в пределах от 44 МДа у низших эукариотов до 125 МДа у позвоночных животных.
  • У всех организмов (человека, птиц, рептилий и других животных) во всех клетках эти структуры устроены аналогичным образом, то есть поровые комплексы являются строго консервативной системой.
  • Компоненты ядерных комплексов имеют субъединичное строение, благодаря которому они обладают высокой пластичностью.
  • Диаметр центрального канала варьируется в пределах 10-26 нм, а высота порового комплекса - порядка 75 нм.

Удаленные от центра участки ядерных пор несимметричны. Ученые связывают это с различными механизмами регулирования транспортной функции на начальных этапах развития клетки. Предполагается также, что все поры являются универсальными структурами и обеспечивают перемещение молекул как в цитоплазму, так и в обратном направлении. Ядерные поровые комплексы присутствуют и в других компонентах клетки, обладающих мембранами, но в более редких случаях (ретикулум, окончатые мембраны цитоплазмы).

Количество пор

Основным фактором того, от чего зависит количество ядерных пор, является активность обмена веществ в клетке (чем она выше, тем больше число канальцев). Их концентрация в толще мембраны может изменяться в несколько раз в различные периоды функционального состояния клеток. Первое увеличение числа пор происходит после деления - митоза (во время реконструкции ядер), а затем в период роста ДНК.

У разных видов животных их количество отличается. Оно зависит также от места взятия образца. Так, в человека их насчитывается порядка 11 шт./мкм 2 , а в несозревшей яйцеклетке лягушки ксенопус - 51 шт./мкм 2 . В среднем их плотность варьирует в пределах 13-30 шт./мкм 2 .

Распределение ядерных пор по поверхности оболочки является практически равномерным, но в местах сближения вещества хромосом с мембраной их концентрация резко уменьшается. У низших эукариотов под ядерной мембраной нет фибриллярной сети жесткой структуры, поэтому поры могут перемещаться вдоль ядерной оболочки, и их плотность на различных участках значительно варьирует.

Функции

Главной функцией ядерного порового комплекса является пассивная (диффузионная) и активная (требующая энергетических затрат) передача молекул через мембрану, то есть обмен веществ между ядром клетки и цитоплазмой. Этот процесс жизненно важен и регулируется тремя системами, которые находятся в постоянном взаимодействии друг с другом:

  • комплекс биологически активных веществ-регуляторов в ядре и цитоплазме - импортин α и β, Ran-белок, гуанозинтрифосфат (пуриновый нуклеотид) и другие ингибиторы и активаторы;
  • нуклеопорины;
  • структурные компоненты порового ядерного комплекса, которые способны изменять свою форму и обеспечивать перенос веществ в нужном направлении.

Из цитоплазмы через ядерные поры поступают белки, необходимые для функционирования ядра, а в обратном направлении выводятся различные формы РНК. Поровый комплекс не только осуществляет чисто механическую транспортировку, но и служит сортировщиком, «узнающим» определенные молекулы.

Пассивная передача происходит для тех веществ, молекулярная масса которых невысока (не больше 5∙10 3 Да). В ядро свободно поступают такие вещества, как ионы, сахара, гормоны, нуклеотиды, аденозинтрифосфорная кислота, участвующая в обмене энергии. Максимальный размер белков, которые могут проникнуть через поры в ядро, - 3,5 нм.

Во время синтеза дочерней молекулы ДНК транспортировка веществ достигает пика активности - по 100-500 молекул через 1 ядерную пору за 1 мин.

Белки пор

Элементы каналов имеют белковую природу. Белки этого комплекса носят название нуклеопоринов. Они собраны примерно в 12 субкомплексах. Условно их делят на три группы:

  • соединения со специфическими повторяющимися последовательностями, узнаваемые биохимическими факторами;
  • не обладающие последовательностями;
  • которые находятся в участке мембраны, формирующей пору, или в самой поре в пространстве между слоями ядерной оболочки.

Исследованиями установлено, что нуклеопорины способны образовывать довольно сложные комплексы, включающие до 7 белков, а также принимают непосредственное участие в транспорте веществ. Некоторые из них могут непосредственно связываться с перемещаемыми через ядерную пору молекулами.

Экспорт веществ в цитоплазму

Одна и та же пора может принимать участие как в выводе, так и в импорте веществ. Обратного перевода РНК из цитоплазмы в ядро не происходит. Ядерные комплексы узнают сигналы для экспорта (NES), которые несут в себе рибонуклеопротеины.

NES-последовательность сигнальных веществ представляет собой сложный комплекс из аминокислот и белков, которые после выведения из ядра в цитоплазму диссоциируют (распадаются на отдельные составляющие). Поэтому аналогичные частички, введенные в цитоплазму искусственным путем, обратно в ядро не проникают.

Процесс митоза

При делении (митозе) клетки происходит «разборка» ядерного порового комплекса. Так, комплексы с молекулярной массой 120 мДа распадаются на субкомплексы по 1 мДа. После окончания деления они снова собираются. При этом ядерные поры перемещаются не отдельно, а массивами. Это является одним из доказательств того, что ядерный поровый комплекс - слаженная система.

Разрушенная мембрана превращается пузырьковое скопление, которое окружает область ядра в периоде интерфазы. В метафазе, когда хромосомы удерживаются в экваториальной плоскости, эти элементы оттесняются к периферийным зонам клетки. В конце анафазы данное скопление начинает контактировать с хромосомами и запускается рост зачатков ядерной мембраны.

Пузырьки превращаются в вакуоли, которые постепенно обволакивают хромосомы. Затем они сливаются и отгораживают новое интерфазное ядро от цитоплазмы. Поры появляются уже на самой ранней стадии, когда еще не произошло замыкание оболочек.

Рекомендуем почитать

Наверх