Конспект урока по теме что такое астрономия. Методическая разработка урока по астрономии "наблюдения - основа астрономии". Связь астрономии с другими науками

Изо 26.04.2024
Изо

Методическая разработка урока по астрономии по теме «Наблюдения – основа астрономии»

Цели урока:

Личностные:

взаимодействовать в группе сверстников при выполнении самостоятельной работы; организовывать свою познавательную деятельность.

Метапредметные:

формулировать выводы об особенностях астрономии как науки; приближенно оценивать угловые расстояния на небе; классифицировать телескопы, используя различные основания (конструктивные особенности, вид исследуемого спектра и. т. Д.); работать с информацией научного содержания.

Предметные:

находить основные круги, линии и точки небесной сферы (истинный (математический) горизонт, зенит, надир, отвесная линия, азимут, высота); формулировать понятие «небесная сфера»; использовать полученные ранее знания из раздела «Оптические явления» для объяснения устройства и принципа работы телескопа.

Сценарий урока

    Организационный момент.

Приветствие. Проверка готовности учащихся к уроку. Создание в классе атмосферы психологического комфорта.

    Актуализация опорных знаний.

    Что изучает наука астрономии?

А) Она изучает происхождение, развитие, свойства объектов, наблюдаемых на небе, а также процессы, связанные с ними - правильно.

Б) Она изучает в целом весь космос, его структуру и возможности.

В) Изучает развитие и размещение звезд.

    Согласно предметов и методов исследований астрономию разделяют на:

    А) только три основные группы: астрометрию, астрофизику и звездную астрономию.

    Б) на две группы и подгруппы: астрофизику (астрометрию, небесная механика) и звездную астрономию (физическое космология)

    В) на пять групп: астрометрию, небесную механику, астрофизику, звездную астрономию, физическую космологию.- правильно

    С какой наукой тесно связана астрономия?

    Какая страна является родоначальницей астрономии?

    Прокомментируйте высказывание Дж. Бернала из книги «Наука в истории общества», используя знания по астрономии: «…Греки не создали цивилизации и даже не унаследовали ее. Они ее открыли… Встретившись с могучим влиянием древних цивилизаций Месопотамии и Египта, они отобрали из культур других стран… любое полезное техническое достижение, а в области идей… объяснение деятельности Вселенной».

    Пифагорейцы первыми высказали идею, согласно которой Земля – шар, основываясь на следующем доказательстве: сфера – идеальная геометрическая фигура, боги могли сотворить только идеальное. В чем отличие представлений пифагорейцев о формах Земли от современных представлениях?

    Нарисуйте схему взаимосвязи и взаимопроникновения астрономии и других наук.

    Первичное усвоение новых знаний

    • Как вы считаете, что является основным научным методом изучения астрономии? (Наблюдения)

      • Какие особенности они имеют?

Наблюдения в астрономии - основной источник информации. Они имеют особенности:

    продолжительность во времени протекания многих астрономических процессов и явлений (пример-эволюция звезд)

    необходимость указания положения небесных тел в пространстве (координаты)

Для решения многих практических задач расстояния до небесных тел не играют роли, важно лишь их видимое расположение на небе. Угловые измерения не зависят от радиуса сферы. Поэтому, хотя в природе небесной сферы и не существует, но астрономы для изучения видимого расположение светил и явлений, которые можно наблюдать на небе в течении суток или многих месяцев, применяют понятие Небесная сфера – воображаемой сферы произвольного радиуса (сколь угодно большого), в центре которой находится глаз наблюдателя. На такую сферу и проецируются звезды, Солнце, Луна, планеты и т.д, отвлекаясь от действительных расстояний до светил и рассматривая лишь угловые расстояние между ними.

(ЭФУ стр 10 рис 1.1 Небесная сфера)

Итак:

    Что является центром небесной сферы? (Глаз наблюдателя).

    Каков радиус небесной сферы? (Произвольный, но достаточно большой).

    Чем отличаются небесные сферы двух соседей по парте? (Положением центра).

Наблюдаемое суточное движение небесной сферы – кажущееся движение отражающее действительное вращение земного шара вокруг оси.

Чтобы отыскать на небе светило. надо указать, в какой стороне горизонта и как высоко оно находится. с этой целью используется система горизонтальных координат – азимут и высота.

(ЭФУ стр 11 рис Система горизонтальных координат)

Для наблюдателя, находящегося в любой точке Земли, нетрудно определить вертикальное и горизонтальное направления. Первое из них определяется с помощью отвеса и изображается на чертеже отвесной линией ZZ ´проходящей чрез центр сферы (точку О). Точка Z , расположенная прямо над головой наблюдателя, называется зенитом. Плоскость, которая проходит через центр сферы перпендикулярно отвесной линии, образует при пересечении со сферой окружность – истинный. или математический, горизонт. Высота светила отсчитывается через зенит и светило М, и выражается длиной дуги этой окружности от горизонта до светила. Эту дугу и соответствующий ей угол принято обозначать буквой h . Положение светила относительно сторон горизонта указывает его вторая координата – азимут, обозначаемый буквой А. Азимут отсчитывается от точки юга в направлении движения часовой стрелки.

На практике в геодезии, азимут и высоту измеряют специальными угломерными оптическими приборами – теодолитами.

Расстояние между звездами на небесной сфере можно выражать только в угловой мере.

Оценка угловых расстояний на небе. (ЭФУ стр 10 рис 1.2 Оценка угловых расстояний)

    Первичная проверка понимания

(ЭФУ стр 11 Задание «Линии и точки небесной сферы»)

Учащиеся выполняют задание и проверяют правильность выполнения.

    Подготовка к выполнению группового задания:

    Для точности наблюдений, нужны приборы.

Как называется основной прибор, который используется для наблюдения небесных тел, приема и анализа приходящего от них излучения? (телескоп)

Наблюдения проводятся в специализированных учреждениях - обсерваториях .

постановка познавательной задачи;

инструктаж о последовательности работы;

раздача дидактического материала по группам.

Класс разбивается на четыре группы.

Каждая группа выполняет свой блок заданий, в качестве источника информации использует учебник, средства Интернета. Каждая группа защищает свою работу.

В процессе защиты остальные участники заполняют таблицы согласно заданию.

1 группа:

Характеристики телескопов



2 группа

Классификация оптических телескопов

3 группа

Классификация телескопов по волновому диапазону наблюдения

4 группа

Эволюция телескопов

    Групповая работа:

знакомство с материалом, планирование работы в группе;

распределение заданий внутри группы;

индивидуальное выполнение задания;

обсуждение индивидуальных результатов работы в группе;

обсуждение общего задания группы;

подведение итогов группового задания.

    Рефлексия (подведение итогов занятия).

сообщение о результатах работы в группах;

анализ познавательной задачи, рефлексия;

общий вывод о групповой работе и достижении поставленной задачи .

Защита работ продолжится на следующем занятии.

Домашнее задание параграф 2.1

1 .Охарактеризуйте с точки зрения физики особенности астрономических систем активной оптики.

2. На двойном фокусном расстоянии от собирающей линзы с оптической силой 10 дптр расположен точечный источник света. Линза вставлена в непрозрачную оправу радиусом 5 см. Каков диаметр светлого пятна на экране, расположенном на расстоянии 30 см от линзы? Сделайте рисунок с указанием хода лучей.

3.По желанию, выбрать тему проекта и воплотить его в «жизнь»:

    Первые звездные каталоги Древнего мира.

    Крупнейшие обсерватории Востока.

    Дотелескопическая наблюдательная астрономия Тихо Браге.

    Создание первых государственных обсерваторий в Европе.

    Устройство, принцип действия и применение теодолитов.

    Угломерные инструменты древних вавилонян – секстанты и октанты.

    Современные космические обсерватории.

    Современные наземные обсерватории.

Урок № 1.

Тема: «Что изучает астрономия»

Цели урока:

    Личностные: обсудить потребности человека в познании, как наиболее значимой ненасыщаемой потребности, понимание различия между мифологическим и научным сознанием.

    Метапредметные: формулировать понятие «предмет астрономии»; доказывать самостоятельность и значимость астрономии как науки.

    Предметные: объяснять причины возникновения и развития астрономии, приводить примеры, подтверждающие данные причины; иллюстрировать примерами практическую направленность астрономии; воспроизводить сведения по истории развития астрономии, ее связь с другими науками.

Основной материал:

Астрономия как наука.

История становления астрономии в связи с практическими потребностями.

Взаимосвязь и взаимовлияние астрономии и других наук.

    Новый материал

    Что изучает астрономия

Люди издавна пытались разгадать тайну окружающего мира, определить свое место во Вселенной, которую древнегреческие философы называли Космосом. Так человек пристально наблюдал за восходом и заходом Солнца, за порядком смены фаз Луны – ведь от этого зависела его жизнь и трудовая деятельность. Человека интересовал суточный ход звезд, но пугали непредсказуемые явления – затмение Луны и Солнца, появление ярких комет. Люди пытались понять закономерность небесных явлений и осмыслить свое место в безграничном мире.

Астрономия (произошло от греческих слов astron – звезда, nomos – закон) – наука изучающая строение, движение, происхождение и развитие небесных тел, их систем и всей Вселенной в целом.

Астрономия как наука – важный вид человеческой деятельности, дающий систему знаний о закономерностях в развитии природы.

Цель астрономии – изучить происхождение, строение и эволюцию Вселенной.

Важными задачами астрономии являются:

    Объяснение и прогнозирование астрономических явлений (например, солнечные и лунные затмения, появление периодических комет, прохождение вблизи Земли астероидов, крупных метеорных тел или комет).

    Изучение физических процессов, происходящих в недрах планет, на поверхности и в их атмосферах , чтобы лучше понять строение и эволюцию нашей планеты.

    Исследование движения небесных тел позволяет выяснить вопрос об устойчивости Солнечной системы, о вероятности столкновения Земли с астероидами и кометами.

    Открытие новых объектов Солнечной системы и изучение их движения .

    Изучение процессов, происходящих на Солнце, и прогнозирование их дальнейшего развития (т.к. от этого зависит существование всего живого на Земле).

    Изучение эволюции других звезд и сравнение их с Солнцем (это помогает познать этапы развития нашего светила).

Итак, астрономия изучает строение и эволюцию Вселенной.

Вселенная – максимально большая область пространства, включающая в себя все доступные для изучения небесные тела и их системы.

    Возникновение астрономии

Астрономия возникла в глубокой древности. Известно, что еще первобытные люди наблюдали звездное небо и затем на стенах пещер рисовали то, что видели. По мере развития человеческого общества с возникновением земледелия появилась потребность в счете времени, в создании календаря. Подмеченные закономерности в движении небесных светил, изменении вида Луны позволили древнему человеку найти и определить единицы счета времени (сутки, месяц, год) и высчитывать наступление определенных сезонов года, чтобы вовремя провести посевные работы и собрать урожай.

Наблюдение звездного неба с древнейших времен формировало самого человека как мыслящее существо. Так в Древнем Египте по появлению на предутреннем небе звезды Сириус жрецы предсказывали периоды весенних разливов Нила, определявших сроки земледельческих работ. В Аравии, где из-за дневной жары многие работы переносились на ночное время, существенную роль играло наблюдение фаз Луны. В странах, где было развито мореплавание, в особенности до изобретения компаса, особое внимание уделялось способам ориентирования по звездам.

В самых ранних письменных документах (3 – 2-е тысячелетие до н.э.) древнейших цивилизаций Египта, Вавилона, Китая, Индии и Америки имеются следы астрономической деятельности. В различных местах Земли наши предки оставили сооружения из каменных глыб и обработанных столбов, ориентированные на астрономически значимые направления. Эти направления совпадают, например, с точками восхода Солнца в дни равноденствий и солнцестояний. Подобные каменные солнечно-лунные указатели найдены в южной Англии (Стоунхенж), в России на южном Урале (Аркаим) и на берегу озера Яново вблизи г. Полоцка. Возраст таких древних обсерваторий – около 5 – 6 тысяч лет.

    Значение и связь астрономии с другими науками

В ходе наблюдений человека за окружающим миром и Вселенной, приобретением и обобщением полученных знаний астрономия в той или иной мере связывалась с различными науками, например:

С математикой (использование приемов приближенных вычислений, замена тригонометрических функций углов значениями самих углов, выраженных в радианной мере);

С физикой (движение в гравитационном и магнитном полях, описание состояний вещества; процессы излучения; индукционные токи в плазме, образующей космические объекты);

С химией (открытие новых химических элементов в атмосфере звезд, становление спектральных методов; химические свойства газов, составляющих небесные тела);

С биологией (гипотезы происхождения жизни, приспособляемость и эволюция живых организмов; загрязнение окружающего комического пространства веществом и излучением);

С географией (природа облаков на Земле и других планетах; приливы в океане, атмосфере и твердой коре Земли; испарение воды с поверхности океанов под действием излучения Солнца; неравномерное нагревание Солнцем различных частей земной поверхности, создающее циркуляцию атмосферных потоков);

С литературой (древние мифы и легенды как литературные произведения, в которых, например, воспевается муза-покровительница науки астрономии - Урания; научно-фантастическая литература).

    Разделы астрономии

Такое тесное взаимодействие с перечисленными науками позволило стремительно развиваться астрономии как науке. На сегодняшний момент астрономия включает ряд разделов, тесно связанных между собой. Они отличаются друг от друга предметом исследования, методами и средствами познания.

    Правильное, научное представление о Земле как небесном теле появилось в Древней Греции. Александрийский астроном Эратосфен в 240 г. до н.э. весьма точно определил по наблюдениям Солнца размеры земного шара. Развивающиеся торговля и мореплавание нуждались в разработке методов ориентации, определении географического положения наблюдателя, точном измерении исходя из астрономических наблюдений. Решением этих задач стала заниматься практическая астрономия .

    Издревна люди считали, что Земля - неподвижный объект, вокруг которого вращается Солнце и планеты. Основоположником такой системы мира – геоцентрической системы мира - является Птолемей. В 1530 г. Николай Коперник перевернул представление об устройстве Вселенной. Согласно его теории Земля, как и все планеты, вращается вокруг Солнца. Систему мира Коперника стали называть гелиоцентрической . Подобное «устройство» солнечной системы долго не было принято обществом. Но итальянский астроном, физик, механик Галилео Галилей с помощью наблюдений через простейший телескоп обнаружил смены фаз Венеры, что свидетельствует о вращении планеты вокруг Солнца. Иоганн Кеплер после длительных вычислений сумел найти законы движения планет, которые сыграли существенную роль в развитии представлений об устройстве Солнечной системы. Раздел астрономии, изучающий движение небесных тел, получил название небесной механики. Небесная механика позволила объяснить и предварительно вычислить с очень высокой точностью почти все движения, наблюдаемые как в Солнечной системе, так и в Галактике.

    В астрономических наблюдениях использовались все более совершенные телескопы, с помощью которых были сделаны новые открытия, причем относящиеся не только к телам Солнечной системы, но и миру далеких звезд. В 1655 г. Гюйгенс рассмотрел кольца Сатурна и открыл его спутник Титан. В 1761 г. Михаил Васильевич Ломоносов открыл атмосферу у Венеры и провел исследование комет. Принимая за эталон Землю, ученые сравнивали ее с другими планетами и спутниками. Так зарождалась сравнительная планетология.

    Огромные и все увеличивающиеся возможности изучения физической природы и химического состава звезд предоставило открытие спектрального анализа, который в XIX веке становится основным методом в изучении физической природы небесных тел. Раздел астрономии, изучающий физические явления и химические процессы, происходящие в небесных телах, их системах и в космическом пространстве, называется астрофизикой .

    Дальнейшее развитие астрономии связано с усовершенствованием техники наблюдений. Большие успехи достигнуты в создании новых типов приемников излучения. Фотоэлектронные умножители, электронно-оптические преобразователи, методы электронной фотографии и телевидения повысили точность и чувствительность фотометрических наблюдений и еще более расширили спектральный диапазон регистрируемых излучений. Стал доступным для наблюдений мир далеких галактик, находящихся на расстоянии миллиардов световых лет. Возникли новые направления астрономии: звездная астрономия, космология и космогония.

Временем зарождения звездной астрономии принято считать 1837-1839 гг., когда независимо друг от друга в России, Германии и Англии были получены первые результаты в определении расстояний до звезд. Звездная астрономия изучает закономерности в пространственном распределении и движении звезд в нашей звездной системе - Галактике, исследует свойства и распределение других звездных систем.

    Космология – раздел астрономии, изучающий происхождение, строение и эволюцию Вселенной как единого целого. Выводы космологии основываются на законах физики и данных наблюдательной астрономии, а также на всей системе знаний определенной эпохи. Интенсивно этот раздел астрономии стал развиваться в первой половине ХХ в., после разработки общей теории относительности Альбертом Эйнштейном.

    Космогония – раздел астрономии, изучающий происхождение и развитие небесных тел и систем. Поскольку все небесные тела возникают и развиваются, идеи об их эволюции тесно связаны с представлениями о природе этих тел вообще. При исследовании звезд и галактик используются результаты наблюдений многих сходных объектов, возникающих в разное время и находящихся на разных стадиях развития. В современной космогонии широко применяются законы физики и химии.

    Структура и масштабы Вселенной

Просмотр видеофильма «Планеты»

Запуск видеофильма проводится путем нажатия на иллюстрацию

    Значение астрономии

Астрономия и ее методы имеют большое значение в жизни современного общества. Вопросы, связанные с измерением времени и обеспечением человечества знанием точного времени, решаются теперь специальными лабораториями - службами времени, организованными, как правило, при астрономических учреждениях.

Астрономические методы ориентировки наряду с другими по-прежнему широко применяются в мореплавании и в авиации, а в последние годы - и в космонавтике. Вычисление и составление календаря, который широко применяется в народном хозяйстве, также основаны на астрономических знаниях.

Составление географических и топографических карт, пред вычисление наступлений морских приливов и отливов, определение силы тяжести в различных точках земной поверхности с целью обнаружения залежей полезных ископаемых - все это в своей основе имеет астрономические методы.

    Закрепление нового материала

Ответьте на вопросы:

Что изучает астрономия?

Какие задачи решает астрономия?

Как возникла наука астрономии? Охарактеризуйте основные периоды ее развития.

Из каких разделов состоит астрономия? Кратко охарактеризуйте каждый из них.

Каково значение астрономии для практической деятельности человечества?

    Домашнее задание

Проект «Древо развития астрономии»

Слайд 2

1. Что изучает астрономия. Возникновение астрономии. Астрономия[греч. astron-звезда,светило, nomos -закон] - наука о строении, движении, происхождении и развитии небесных тел, их систем и всей Вселенной в целом.Вселенная- максимально большая область пространства, включающая в себя все доступные для изучения небесные тела и их системы.

Слайд 3

Аллегория Яна Гевелия (1611-1687, Польша), изображает музу Уранию, покровительницу астрономии, которая в руках держит Солнце и Луну, а на голове у нее сверкает корона в виде звезды. Урания окружена нимфами, изображающими пять ярких планет, слева Венеру и Меркурия (внутренние планеты), справа – Марс, Юпитер и Сатурн.

Слайд 4

Потребность в астрономических знаниях диктовалась жизненной необходимостью:

Потребность счета времени, ведение календаря. Ориентация на местности, находить дорогу по звездам, особенно мореплавателям. Любознательность – разобраться в происходящих явлениях. Забота о своей судьбе, породившая астрологию. Великолепный хвост кометы МакНота, 2007г Падение болида, 2003г

Слайд 5

Систематические астрономические наблюдения проводились тысячи лет назад

Солнечный камень древних ацтеков Солнечная обсерватория в Дели, Индия Солнечные часы в обсерватории в Джайпуре

Слайд 6

Древняя обсерватория Стоунхендж, Англия, построен в 19-15 веках до н.э.

Стоунхендж (англ- «Каменная изгородь») - внесённое в список Всемирного наследия каменное мегалитическое сооружение (кромлех) на Солсберийской равнине в графстве Уилтшир (Англия). Находится примерно в 130 км к юго-западу от Лондона.

Слайд 7

38 пар вертикальных камней, высотой не менее 7 метров и весом не менее 50 тонн каждый. Диаметр занимаемого колоссами круга составляет 100 метров.

О назначении гигантского сооружения до сих пор идут споры, наиболее популярными выглядят следующие гипотезы: 1. Место ритуальных церемоний и погребений (жертвоприношений). 2. Храм Солнца. 3. Символ власти доисторических жрецов. 4. Город Мертвых. 5. Языческий собор или священное убежище на благословенной богом земле. 6. Недостроенная АЭС (фрагмент цилиндра реакторного отделения). 7. Астрономическая обсерватория древних ученых. 8. Место посадки космических кораблей НЛО. 9. Прообраз современного компьютера. 10. Просто так, без причины.

Слайд 8

Главная ось комплекса, идущая по аллее через пяточный камень, указывает на точку восхода Солнца в день летнего солнцестояния. Восход дневного светила в этой точке происходит только в определенный день в году - 22 июня.

Слайд 9

Периоды развития астрономии: Древнейший I-й Античный мир (до Н.Э.) II-йДотелескопический (Н.Э. до 1610г) Классический(1610 - 1900) III-йТелескопический (до спектроскопии, 1610-1814гг) IV-йСпектроскопический (до фотографии, 1814-1900гг) V-йСовременный (1900-н.в) Разделы астрономии: 1. Практическая астрономия 2. Небесная механика 3. Сравнительная планетология 4. Астрофизика 5. Звездная астрономия 6. Космология 7. Космогония 2. Разделы астрономии. Связь с другими науками.

Слайд 10

Древо астрономических знаний

Слайд 11

Слайд 12

Связь астрономии с другими науками

1 - гелиобиология2 - ксенобиология3 - космическая биология и медицина4 - математическая география5 - космохимияА - сферическая астрономияБ - астрометрияВ - небесная механикаГ - астрофизикаД - космологияЕ - космогонияЖ - космофизика Физика Химия Биология География и геофизика История и обществознание Литература Философия

Слайд 13

3. Общие представления о масштабе и структуре ВселеннойВселенная- максимально большая область пространства, включающая в себя все доступные для изучения небесные тела и их системы. Реальный мир,вероятно,устроен так, что могут существовать другие вселенные с иными законами природы,а физические постоянные могут иметь другие значения.Вселенная - уникальная всеобъемлющая система, охватывающая весь существующий материальный мир, безграничный в пространстве и бесконечный по разнообразию форм.

1 астрономическая единица = 149, 6 млн.км ~ 150 млн.км 1пк (парсек) = 206265 а.е. = 3,26 св. лет 1 световой год (св. год) - это расстояние, которое луч света со скоростью почти 300 000 км/с пролетает за 1 год и равен 9,46 миллионам миллионов километров!

Слайд 14

Космические системы

Солнечная система - Солнце и движущиеся вокруг тела (планеты, кометы, спутники планет, астероиды). Солнце – самосветящееся тело, остальные тела, как и Земля светят отраженным светом. Возраст СС ~ 5 млрд. лет. Таких звездных систем с планетами и другими телами во Вселенной огромное количество. Нептун находится на расстоянии 30 а.е.

Слайд 15

Солнце как звезда

Вид Солнца в разных диапазонах электромагнитных волн

Слайд 16

Одним из самых примечательных объектов звездного неба является Млечный Путь-часть нашей Галактики. Древние греки называли его «молочный круг». Первые наблюдения в телескоп,проведенные Галилеем, показали, что Млечный Путь – это скопление очень далеких и слабых звезд. Видимые на небе звезды- это ничтожная доля звезд, входящих в состав галактик.

Слайд 17

Так выглядит наша Галактика сбоку

  • Слайд 18

    Так выглядит наша Галактика сверху диаметр около 30 кпк

  • Слайд 19

    Галактики- системы звезд, их скоплений и межзвездной среды. Возраст галактик 10-15 млрд. лет

    Слайд 20

    4. Астрономические наблюдения и их особенности.Наблюдения – основной источник знаний о небесных телах, процессах и явлениях происходящих во Вселенной

    Слайд 21

    Первым астрономическим инструментом можно считать гномон- вертикальный шест, закрепленный на горизонтальной площадке, позволявший определять высоту Солнца. Зная длину гномона и тени, можно определить не только высоту Солнца над горизонтом, но и направление меридиана, устанавливать дни наступления весеннего и осеннего равноденствий и зимнего и летнего солнцестояний.

    Слайд 22

    Другие древние астрономические инструменты:астролябия, армиллярная сфера, квадрант, параллактическая линейка

    Слайд 23

    Оптические телескопы

    Рефрактор (линзовый)- 1609г. Галилео Галилей в январе 1610г открыл 4 спутника Юпитера. Самый большой рефрактор в мире изготовлен Альваном Кларком (диаметр 102см), установлен в 1897г в Йерской обсерватории (США) с тех пор профессионалы не строят гигантские рефракторы.

    Слайд 24

    Рефракторы

  • Слайд 25

    Рефлектор(используется вогнутое зеркало)- изобрел Исаак Ньютон в 1667г

    Слайд 26

    Большой Канарский телескопИюль 2007 г - первый свет увидел телескоп Gran Telescopio Canarias на Канарских островах с диаметром зеркала 10,4 м, который является самым большим оптическим телескопом в мире по состоянию на 2009 год.

    Слайд 27

    Крупнейшими телескопами-рефлекторами являются два телескопа Кека, расположенные на Гавайях, обсерватория Мауна-Кеа (Калифорния, США). Keck-I и Keck-II введены в эксплуатацию в 1993 и 1996 соответственно и имеют эффективный диаметр зеркала 9,8 м. Телескопы расположены на одной платформе и могут использоваться совместно в качестве интерферометра, давая разрешение, соответствующее диаметру зеркала 85 м.

    Слайд 28

    SALT - Большой южно-африканский телескоп (англ. Southern African Large Telescope) - оптический телескоп с диаметром главного зеркала 11 метров, находящийся в Южно-африканской астрономической обсерватории, ЮАР. Это крупнейший оптический телескоп в южном полушарии. Дата открытия 2005 год

    Слайд 29

    Большой бинокулярный телескоп (англ. The Large Binocular Telescope (LBT) , 2005 г) - один из наиболее технологически передовых и обладающих наивысшим разрешением оптических телескопов в мире, расположенный на 3,3-километровой горе Грэхем в юго-восточной части штата Аризона (США). Телескоп обладает двумя зеркалами диаметром 8,4 м, разрешающая способность эквивалентна телескопу с одним зеркалом диаметром 22,8 м.

    Слайд 30

    телескопVLТ(very large telescope) Паранальская обсерватория, Чили - телескоп, созданный по соглашению восьми стран. Четыре телескопа одного типа, диаметр главного зеркала составляет 8,2 м. Свет, собираемый телескопами эквивалентен одиночному зеркалу 16 метров в диаметре.

    Слайд 31

    GEMINI North и GEMINI South Телескопы-близнецы Gemini North и Gemini South имеют зеркала диаметром 8.1м - международный проект. Они установлены в Северном и Южном полушариях Земли,чтобы охватить наблюдениями всю небесную сферу. Gemini N построен на горе Мауна Кеа (Гавайи) на высоте 4100м над уровнем моря, а Gemini S сооружен в Сьеро Пачон (Чили), 2737м.

    Слайд 32

    Крупнейший в Евразии телескоп БТА - Большой Телескоп Азимутальный - находится на территории России, в горах Северного Кавказа и имеет диаметр главного зеркала 6 м. (монолитное зеркало 42т, 600т телескоп, можно видеть звезды 24-й величины). Он работает с 1976 и длительное время был крупнейшим телескопом в мире.

    Слайд 33

    30-метровый телескоп (Thirty Meter Telescope - TMT): диаметр главного зеркала 30 м (492 сегмента, каждый размером 1,4 м.Строительство нового объекта планируется начать в 2011 году. "Тридцатиметровый телескоп" к 2018 году возведут на вершине потухшего вулкана Мауна-Кеа (Mauna Kea) на Гавайях, в непосредственной близости от которого уже работает несколько обсерваторий (Mauna Kea Observatories).

    Слайд 34

    Обсерватории– научно-исследовательские учреждения Mauna Kea на Гавайях - одно из самых прекрасных мест для наблюдения в мире. С высоты в 4200 метров телескопы могут выполнять измерения в оптическом, инфракрасном диапазоне и иметь длину волны в пол миллиметра.

    Телескопы обсерватории Мауна Кеа, Гавайи

    Слайд 35

    Зеркально-линзовый – 1930г, Барнхард Шмидт (Эстония). В 1941г Д.Д. Максутов (СССР) создал менисковый с короткой трубой. Применяется любителями – астрономами.

    Слайд 36

    Слайд 37

    Радиотелескоп - астрономический инструмент для приёма радиоизлучения небесных объектов (в Солнечной системе, Галактике и Метагалактике) и исследования его характеристик. Состоит:антенна и чувствительный приемник с усилителем. Собирает радиоизлучение, фокусирует его на детекторе, настроенном на выбранную длину волны, преобразует этот сигнал. В качестве антенны используется большая вогнутая чаша или зеркало параболической формы. преимущества: в любую погоду и время суток можно вести наблюдение объектов, недоступные для оптических телескопов.

    Слайд 38

    Радиоантенна Янского. Первым космическое радиоизлучение зарегистрировал Карл Янский в 1931 году. Его радиотелескоп представлял собой вращающуюся деревянную конструкцию, установленную на автомобильных колесах для исследования помех радиотелефонной связи на длинах волн λ = 4 000 м и λ = 14,6 м. К 1932 году стало ясно, что радиопомехи приходят из Млечного Пути, где расположен центр Галактики. А в 1942 было открыто радиоизлучение Солнца

    Слайд 39

    Аресибо (остров Пуэрто –Рико, 305м-забетонированная чаша потухшего вулкана, введен в 1963г). Самая большая радиоантенна в мире

    Слайд 40

    Радиотелескоп РАТАН- 600, Россия(Сев.Кавказ) , вступил в строй в 1967г, состоит из 895 отдельных зеркал размером 2,1х7,4м и имеет замкнутое кольцо диаметром 588м

    Слайд 41

    15-метровый телескоп Европейской Южной обсерватории

    Слайд 42

    Система радиотелескопов VLA Very Large Array в Нью-Мексико (США) состоит из 27 тарелок, каждая диаметром 25 метров. Налаживают связь между радиотелескопами, находящимися в разных странах и даже на разных континентах. Такие системы получили название радиоинтерферометров со сверхдлинной базой (РСДБ). Дают максимально возможное угловое разрешение, в несколько тысяч раз лучшее, чем у любого оптического телескопа.

    Слайд 43

    LOFAR - первый цифровой радиотелескоп, который не нуждается ни в подвижных частях, ни в моторах. Открыт в 2010г. июнь.Много простых антенн, гигантские объемы данных и мощности компьютеров.LOFAR представляет собой гигантский массив, состоящий из 25 тысяч небольших антенн (от 50 см до 2 м в поперечнике). Диаметр LOFAR – примерно 1000 км. Антенны массива расположены на территории нескольких стран: Германии, Франции, Великобритании, Швеции.

    Слайд 44

    Космические телескопы

    Космический телескоп «Хаббл» (Hubble Space Telescope, HST) - это целая обсерватория на околоземной орбите, общее детище NASA и Европейского космического агентства. Работает с 1990 г. Самый крупный оптический телескоп, который ведет наблюдения в инфракрасном, ультрафиолетовом диапазоне. За 15 лет работы «Хаббл» получил 700 000 снимков 22 000 всевозможных небесных объектов - звезд, туманностей, галактик, планет. Длина - 15,1 м, вес 11,6 тонн, зеркало 2,4 м

    Слайд 45

    Рентгеновский телескоп «Чандра» (Chandra X-ray Observatory)вышел в космос 23 июля 1999 года. Его задача - наблюдать рентгеновские лучи, исходящие из областей, где есть очень высокая энергия, например, в областях звездных взрывов

    Слайд 46

    Телескоп «Спитцер» (Spitzer) - был запущен НАСА 25 августа 2003. Он наблюдает космос в инфракрасном диапазоне. В этом диапазоне находится максимум излучения слабосветящегося вещества Вселенной - тусклых остывших звезд, гигантских молекулярных облаков.

    Слайд 47

    Телескоп «Кеплер» запустили 6 марта 2009 года. Это первый телескоп специально предназначенный для поиска экзопланет. Он будет наблюдать изменение яркости более чем 100 000 звезд в течение 3,5 лет. За это время он должен определить, сколько планет, подобных Земле, находится на пригодном для развития жизни удалении от своих звезд, составить описание этих планет и формы их орбит, изучить свойства звезд и многое другое. Когда «Хаббл» «уйдет на пенсию», его место должен занять космический телескоп имени Джеймса Вебба (James Webb Space Telescope, JWST). У него будет огромное зеркало 6,5 метров в диаметре. Его задача - найти свет первых звезд и галактик, которые появились сразу после Большого взрыва. Его запуск запланирован на 2013 год. И кто знает, что он увидит в небе и как изменится наша жизнь.

    Тема: Предмет астрономии.
    Ход урока:
    Вводная беседа (2 мин)
    Требования: учебник­тетрадь
    новый предмет ­ работа с учебником
    Новый материал (30 мин) Начало ­ демонстрация видео клипа с CD, моей презентации.
    Астрономия [греч. astron ­ звезда, nomos ­закон] – наука о Вселенной (о природе)= наука о строении, происхождении и развитии небесных тел и их систем, муза ­
    Урания.
    Системы: ­ все тела во Вселенной образуют системы различной сложности.
    1. Солнечная система
    2. Видимые на небе звезды, в том числе Млечный путь – это часть Галактики (наша галактика
    Млечный Путь)
    3. Галактики объединяются в своего рода скопления (системы)
    Все тела находятся в непрерывном движении, изменении, развитии. Планеты, звезды, галактики имеют
    свою историю, нередко исчисляемую млрд. лет.
    На схеме отражена системность и расстояния:
    1 астрономическая единица = 149, 6 млн.км (среднее расстояние от Земли до Солнца).
    1пк (парсек) = 206265 а.е. = 3, 26 св. лет
    1 световой год (св. год) ­ это расстояние, которое луч света со скоростью почти 300 000 км/с пролетает
    за 1 год. 1 световой год равен 9,46 миллионам миллионов километров!
    История астрономии – одна из самых увлекательных и древнейших наук (можно показать отрывок из фильма Астрономия (ч.1, фр. 2 Самая древняя наука). Потребность
    в астрономических знаниях диктовалась жизненной необходимостью:

    1. Счета времени (календарь).
    2. Находить дорогу по звездам, особенно мореплавателям
    3. Любознательность – разобраться в происходящих явлениях и поставить их себе на службу.
    4.
    Забота о своей судьбе, народившая астрологию.
    Этапы развития астрономии
    I­й Античный мир (до н. э)
    II­ой Дотелескопический (наша эра до 1610г)
    III­ий Телескопический (1610­1814гг)
    IV­ый Спектроскопия (1814­1900гг)
    V­ый Современный (1900 ­ наст.время)
    Связь c другими предметами.
    1 ­ гелиобиология
    2 ­ ксенобиология
    3 ­ космическая биология и медицина
    4 ­ математическая география
    5 ­ космохимия
    А ­ сферическая астрономия
    Б ­ астрометрия
    В ­ небесная механика
    Г ­ астрофизика
    Д ­ космология
    Е ­ космогония
    Ж ­ космофизика
    Основные разделы астрономии:
    Классическая
    астрономия
    объединяет ряд разделов астрономии, основы которых были разработаны до начала ХХ века:

    Астрометрия:
    Небесная
    механика
    Современная
    астрономия
    Астрофизика
    Космогония
    Космология
    Сферическая
    астрономия
    Фундаментальная
    астрометрия
    Практическая
    астрономия
    изучает положение, видимое и собственное движение космических тел и решает задачи, связанные с
    определением положений светил на небесной сфере, составлением звездных каталогов и карт,
    теоретическим основам счета времени.
    ведет работу по определению фундаментальных астрономических постоянных и теоретическому
    обоснованию составления фундаментальных астрономических каталогов.
    занимается определением времени и географических координат, обеспечивает Службу Времени, вычисление
    и составление календарей, географических и топографических карт; астрономические методы ориентации
    широко применяются в мореплавании, авиации и космонавтике.
    исследует движение космических тел под действием сил тяготения (в пространстве и времени). Опираясь на данные астрометрии,
    законы классической механики и математические методы исследования, небесная механика определяет траектории и характеристики
    движения космических тел и их систем, служит теоретической основой космонавтики.
    изучает основные физические характеристики и свойства космических объектов (движение, строение, состав и т.д.), космических
    процессов и космических явлений, подразделяясь на многочисленные разделы: теоретическая астрофизика; практическая
    астрофизика; физика планет и их спутников (планетология и планетографии); физика Солнца; физика звезд; внегалактическая
    астрофизика и т. д.
    изучает происхождение и развитие космических объектов и их систем (в частности Солнечной системы).
    исследует происхождение, основные физические характеристики, свойства и эволюцию Вселенной. Теоретической основой ее
    являются современные физические теории и данные астрофизики и внегалактической астрономии.
    Наблюдения в астрономии ­ основной источник информации. Они имеют особенности:


    длительные промежутки времени и одновременное наблюдение родственных объектов (пример­эволюция звезд)
    необходимость указания положения небесных тел в пространстве (координаты)
    Для точности наблюдений, нужны приборы. Наблюдения проводятся в специализированных учреждениях ­обсерваториях.
    Телескоп ­ увеличивает угол зрения (разрешающая способность), и собирает больше света (проникающая сила).
    Виды телескопов: = оптические и радио (Показ)
    1. Оптические телескопы
    Рефрактор ­ используется преломление света в линзе (преломляющий), первый в 1609г Г. Галилей
    Рефлектор ­ используется вогнутое зеркало (отражающий), фокусирующее лучи, первый в 1668г изобрел И. Ньютон.
    Зеркально – линзовый (камера Шмидта) ­ комбинация обеих видов, первый построил в 1930г Б. ШМИДТ.
    непосредственные наблюдения

     фотографировать (астрограф)
     фотоэлектрические – датчик, колебание энергии, излучений
    назначение

    спектральные – дают сведения о температуре, химическом составе, магнитных полях, движений небесных тел.

    В астрономии расстояние между небесными телами измеряют углом

    угловое расстояние:
    градусы – 5о,2, минуты – 13",4, секунды – 21",3
    Обычным глазом мы видим рядом 2 звезды (разрешающая способность), если угловое расстояние не менее 1­2". Угол, под которым мы видим диаметр Солнца и Луны ~
    0,5о= 30".
    Вычисления:
    "/D или = 206265∙
    α
    λ
    λ
    /D [где
    ­ длина световой волны, а D – диаметр объектива

    Разрешающая способность = 14α
    телескопа]
     Светосила Е=~S (или D2) объектива. Е=(D/dхр)2, где dхр­ диаметр зрачка человека в обычных условиях 5мм.
    β α
     Увеличение =Фокусное расстояние объектива/Фокусное расстояние окуляра. W=F/f= /
    .
    При сильном увеличении >500х видно колебания воздуха, поэтому телескоп необходимо располагать как можно выше в горах и где небо часто безоблачно, а еще лучше за
    пределами атмосферы (в космосе).

    Задача (самостоятельно­3 мин) Для 6м телескопа– рефлектора в Специальной астрофизической обсерватории (на северном Кавказе)
    определить разрешающую способность, светосилу и увеличение, если используется окуляр с фокусным расстоянием 5см (F=24м). [Оценка по
    скорости и правильности решения]
    2. Радиотелескопы ­ преимущества: в любую погоду и время суток можно вести наблюдение объектов, недоступные для оптических. Представляют собой чашу
    (подобие локатора). Радиоастрономия получило развитие с 50­х годов 20­го столетия.

    Закрепление материала .
    Вопросы:
    1. Какие сведения астрономические вы изучали в курсах других предметов? (природоведение, физики, истории и т.д.)
    2. В чем специфика астрономии по сравнению с другими науками о природе?

    3. Какие типы небесных тел вам известны?
    4. Планеты. Сколько, как называются, порядок расположения, самая большая и т.д.
    5. Какое значение в народном хозяйстве имеет сегодня астрономия?
    Значения в народном хозяйстве:
    ­ Ориентирование по звездам для определения сторон горизонта
    ­ Навигация (мореходство, авиация, космонавтика) ­ искусство прокладывать путь по звездам
    ­ Исследование Вселенной с целью понять прошлое и спрогнозировать будущее
    ­ Космонавтика:
    ­ Исследование Земли с целью сохранения ее уникальной природы
    ­ Получение материалов, которые невозможно получение в земных условиях
    ­ Прогноз погоды и предсказание стихийных бедствий
    ­ Спасение терпящих бедствие судов
    ­ Исследования других планет для прогнозирования развития Земли

    Домашнее задание: Введение, §1; вопросы и задания для самоконтроля (стр11); стр29 (п.1­6) – главные мысли.
    При подробном изучении материала об астрономических инструментах можно предложить ученикам вопросы и задачи:
    1. Определите основные характеристики телескопа Г. Галилея.
    2. В чем преимущества и недостатки оптической системы рефрактора Галилея по сравнению с оптической схемой рефрактора Кеплера?
    3. Определите основные характеристики БТА. Во сколько раз БТА мощнее МШР?
    4. В чем преимущества телескопов, установленных на борту космических аппаратов?
    5. Какими условиями должно удовлетворять место для строительства астрономической обсерватории?

  • Рекомендуем почитать

    Наверх