Понятие множества, подмножества, пустого множества. Диаграммы Вейля. Понятие множества. Подмножества Что такое множество и подмножество

Физкультура 29.12.2023

Сравнительный анализ возможностей человека и машины

Показатели превосходства человека Показатели превосходства машины
Обнаружение полезных сигналов с низким энергетическим уровнем (световых, звуковых) Выполнение однообразных точных работ длительное время.
Опознание образов и их обобщение Быстрая реакция на сигналы управления
Обнаружение сигналов на фоне высоких уровней шумов Плавное и точное приложение больших усилий.
Хранение большого объема информации длительное время и использование требуемой информации в нужное время Хранение больших объемов информации и быстродействие при их вводе
Способность к восприятию и использованию неполной информации Выполнение сложных вычислений с большой точностью и скоростью
Нахождение и использование эвристических методов решения Одновременное выполнение нескольких разнообразных действий
Реагирование на непредвиденные обстоятельства Использование дедуктивных методов в процессе принятия решения
Оригинальность в решении задач Нечувствительность ко многим посторонним факторам
Способность учитывать прошлый опыт и изменять способ действий Работоспособность в условиях, где человек не может работать
Способность выполнять операции в непредвиденных ситуациях Чувствительность к стимулам превосходящим человеческие
Способность работать в условиях перегрузок Время стабильной работы больше, чем у человека
Чувствительность к широкому диапазону стимулов

В системе «человек-машина» к человеку предъявляются ряд требований.

Человек должен:

Уметь четко формулировать задачи;

Знать компоненты СОУ и ее возможности;

Уметь составлять программу решения задачи;

Уметь сравнивать полученный результат с предполагаемым и изменять несоответствие изменением способа решения задачи.

Множество - это объединение в одно целое объектов, связанных между собой неким свойством. Термин «множество» в математике не всегда обозначает большое количество предметов, оно может состоять из одного элемента и вообще не содержать элементов, тогда его называют пустым и обозначают .

Множество B называется подмножеством множества A , если любой элемент множества B является элементом множества A . Обозначение: .

Пример. . Запишем все подмножества множества M: {-14}, {11}, {17}, {-14;11}, {-14;17}, {11;17}, {-14;11;11}, .

Свойства включения множеств:

1. Пустое множество является подмножеством любого множества: Æ Ì А .

2. Любое множество является подмножеством самого себя, т. е. для любого множества А справедливо включение А Ì А .



3. Если А – подмножество множества В , а В – подмножество множества С , то А – подмножество множества С .

Универсальное множество это самое большее множество, содержащее в себе все множества, рассматриваемые в данной задаче.

На диаграмме Эйлера – Венна универсальное множество обозначают в виде прямоугольника и буквы U .

Множество - совокупность любых объектов. Множества обозначают большими буквами латинского алфавита - от A до Z .

Основные числовые множества: множество натуральных чисел и множество целых чисел, всегда обозначаются одними и теми же буквами:

N - множество натуральных чисел

Z - множество целых чисел

Элемент множества - это любой объект, входящий в состав множества. Принадлежность объекта к множеству обозначается с помощью знака ∈ . Запись

читается так: 5 принадлежит множеству Z или 5 - элемент множества Z .

Множества делятся на конечные и бесконечные. Конечное множество - множество, содержащее определённое (конечное) количество элементов. Бесконечное множество - множество, содержащее бесконечно много элементов. К бесконечным множествам можно отнести множества натуральных и целых чисел.

Для определения множества используются фигурные скобки, в которых через запятую перечисляются элементы. Например, запись

L = {2, 4, 6, 8}

означает, что множество L состоит из четырёх чётных чисел.

Термин множество употребляется независимо от того, сколько элементов оно содержит. Множества не содержащие ни одного элемента называются пустыми .

Подмножество

Подмножество - это множество, все элементы которого, являются частью другого множества.

Визуально продемонстрировать отношение множества и входящего в него подмножества можно с помощью кругов Эйлера . Круги Эйлера - это геометрические схемы, помогающие визуализировать отношения различных объектов, в нашем случае, множеств.

Рассмотрим два множества:

L = {2, 4, 6, 8} и M = {2, 4, 6, 8, 10, 12}

Каждый элемент множества L принадлежит и множеству M , значит, множество L M . Такое соотношение множеств обозначают знаком ⊂ :

L M

Запись L M читается так: множество L является подмножеством множества M .

Множества, состоящие из одних и тех же элементов, независимо от их порядка, называются равными и обозначаются знаком = .

Рассмотрим два множества:

L = {2, 4, 6} и M = {4, 6, 2}

Так как оба множества состоят из одних и тех же элементов, то L = M .

Пересечение и объединение множеств

Пересечение двух множеств - это совокупность элементов, принадлежащих каждому из этих множеств, то есть их общая часть. Пересечение обозначается знаком ∩ .

Например, если

L = {1, 3, 7, 11} и M = {3, 11, 17, 19}, то L M = {3, 11}.

Запись L M читается так: пересечение множеств L и M .

Из данного примера следует, что пересечением множеств называется множество, которое содержит только те элементы, которые встречаются во всех пересекающихся множествах .

Объединением двух множеств называется множество, содержащее все элементы исходных множеств в единственном экземпляре, то есть если один и тот же элемент встречается в обоих множествах, то в новое множество этот элемент будет включён только один раз. Объединение обозначается знаком ∪ .

Например, если

L = {1, 3, 7, 11} и M = {3, 11, 17, 19},

то L M = {1, 3, 7, 11, 17, 19}.

Запись L M читается так: объединение множеств L и M .

При объединении равных множеств объединение будет равно любому из данных множеств:

если L = M , то L M = L и L M = M .

На простом примере напомним, что называется подмножеством, какие бывают подмножества (собственные и несобственные), формулу нахождения числа всех подмножеств, а также калькулятор, который выдает множество всех подмножеств.

Пример 1. Дано множество А = {а, с, р, о}. Выпишите все подмножества
данного множества.

Решение:

Собственные подмножества: {а} , {с} , {р} , {о} , {а, с} , {а, р} , {а, о}, {с, р} , {с, о } ∈, {р, о}, {а, с,р} , {а, с, о}, {с, р, о}.

Несобственные: {а, с, р, о}, Ø.

Всего: 16 подмножеств.

Пояснение. Множество A является подмножеством множества B если каждый элемент множества A содержится также в B.

Пустое множество ∅ является подмножеством любого множества, называется несобственным;
. любое множество является подмножеством самого себя, также называется несобственным;
. У любого n-элементного множества ровно 2 n подмножеств.

Последнее утверждение является формулой для нахождения числа всех подмножеств без перечисления каждого.

Вывод формулы: Допустим у нас имеется множество из n-элементов. При составлении подмножеств первый элемент может принадлежать подмножеству или не принадлежать, т.е. первый элемент можем выбрать двумя способами, аналогично для всех остальных элементов (всего n-элементов), каждый можем выбрать двумя способами, и по правилу умножения получаем: 2∙2∙2∙ ...∙2=2 n

Для математиков сформулируем теорему и приведем строгое доказательство.

Теорема. Число подмножеств конечного множества, состоящего из n элементов, равно 2 n .

Доказательство. Множество, состоящее из одного элемента a, имеет два (т.е. 2 1) подмножества: ∅ и {a}. Множество, состоящее из двух элементов a и b, имеет четыре (т.е. 2 2) подмножества: ∅, {a}, {b}, {a; b}.
Множество, состоящее из трех элементов a, b, c, имеет восемь (т.е. 2 3) подмножеств:
∅, {a}, {b}, {b; a}, {c}, {c; a},{c; b}, {c; b; a}.
Можно предположить, что добавление нового элемента удваивает число подмножеств.
Завершим доказательство применением метода математической индукции. Сущность этого метода в том, что если утверждение (свойство) справедливо для некоторого начального натурального числа n 0 и если из предположения, что оно справедливо для произвольного натурального n = k ≥ n 0 можно доказать его справедливость для числа k + 1, то это свойство справедливо для всех натуральных чисел.

1. Для n = 1 (база индукции) (и даже для n = 2, 3) теорема доказана.

2. Допустим, что теорема доказана для n = k, т.е. число подмножеств множества, состоящего из k элементов, равно 2 k .

3. Докажем, что число подмножеств множества B, состоящего из n = k + 1 элемента равно 2 k+1 .
Выбираем некоторый элемент b множества B. Рассмотрим множество A = B \ {b}. Оно содержит k элементов. Все подмножества множества A - это подмножества множества B, не содержащие элемент b и, по предположению, их 2 k штук. Подмножеств множества B, содержащих элемент b, столько же, т.е. 2 k
штук.

Следовательно, всех подмножеств множества B: 2 k + 2 k = 2 ⋅ 2 k = 2 k+1 штук.
Теорема доказана.

В примере 1 множество А = {а, с, р, о} состоит из четырех элементов, n=4, следовательно, число всех подмножеств равно 2 4 =16.

Если вам необходимо выписать все подмножества, или составить программу для написания множества всех подмножеств, то имеется алгоритма для решения: представлять возможные комбинации в виде двоичных чисел. Поясним на примере.

Пример 2. Eсть множество {a b c}, в соответствие ставятся следующие числа:
000 = {0} (пустое множество)
001 = {c}
010 = {b}
011 = {b c}
100 = {a}
101 = {a c}
110 = {a b}
111 = {a b c}

Калькулятор множества всех подмножеств.

В калькуляторе уже набраны элементы множества А = {а, с, р, о} , достаточно нажать кнопку Submit. Если вам необходимо решение своей задачи, то набираем элементы множества на латинице, через запятую, как показано в примере.

Определение:

Множество – это любая совокупность объектов, которые называются его элементами.

Если х- элемент множества М, то обозначают: х М { х – принадлежит М}, если не принадлежит, то х ∉ М; Множество не содержащее элементов называется пустым и обозначается ∅

Множество, в котором содержатся все элементы, находящиеся в рассмотрении, называется универсальным или универсумом и обозначается –

Ư. Множества, состоящие из одних и тех же элементов, называются равными и обозначаются А = В.

Если любой элемент множества В является элементом множества А, то множество В называется подмножеством множества А (частью множества А) и обозначается В ⊂ А; Отсюда следует, что любое множество является частью самого себя.

По определению пустое множество ∅ является подмножеством любого множества. Т.о. у любого множества А есть два подмножества:

Они называются несобственными подмножествами множества А. Любое множество В множества А, которое не является несобственными подмножествами А, (т.е. они отличны от А и ∅) и называются собственными подмножествами подмножества А. Множество из одного элемента а обозначается {а}.

Пример: А = {1;2;3} тогда пустое множество ∅ и само множество А является несобственными подмножествами А.

Множества:{1},{2},{3},{1;2},{1;3},{2;3} называются собственными подмножествами множества А. Совокупность всех множеств А называется его булеаном и обозначается – 2 А; В А, означает, что В А, В ≠ А. В этом случае говорят, что В строго включено в А или В является собственным подмножеством А;

В случае В ⊆ А, В = А говорят, что В нестрогое включение в А, т.е. В является несобственным подмножеством А.

Основные логические символы

ХР(х) – квантор общности (означает “для любого х выполняется

ХР(х) – квантор существования (означает “существует х, для которого выполняется Р (х)”.)

Р ⇒ Q – импликация (“из Р следует Q ”)

⟺ - эквивалентность (“тогда и только тогда”)

Р ∧ Q – конъюнкция (“Р и Q”)

Р ∨ Q – дизъюнкция (“Р или Q”)

Не Р или - отрицание Р

: = - символы присвоения (“положим”)

def – (“положим по определению”)

Используя эти символы можно записать:

1) (А = В) ⟺(( х ∈ А ⇒ х ∈ В) ∧ ( х ∈ В ⇒ х ∈ А)

2) (А ⊆ В) ⟺ ( х/х ∈А ⇒ х ∈ В)

3) (А = В) ⟺ (В ⊂ А ∧ А⊂ В)

Задание множеств

Перечислением элементов: М: = { а 1 ; а 2 ; а 3 ; …; а n }

или характеристическим свойством Р(х)

(предикатом): М: = { х | Р(х) }

Например:

1) В = { х ∈ N | х < 3} означает, что В= { 1; 2}

2) А ={ х ∈ N | х +1=5} означает, что А = {4}

3) В = { х ∈ N | х M5} или {5;10;15…}

т.е. { х | Р(х) }означает, что множество элементов х множества обладает свойством Р(х)

4) М = { х ∈ N | х ­3< 5}={1;2;3;4;5;6;7}

Операции над множествами

Рассматриваются следующие операции над множествами:

1 0 . Объединение множеств А и В.

U

А ∪ В = { х/х ∈ А или х ∈ В} – т.е. состоит из элементов, принадлежащих хотя б одному из множеств А или В.

2 0 . Пересечение множеств А и В.

A∩B = {x/x ∈ A и x ∈ B} – т.е. состоят из элементов, принадлежащих одновременно А и В.

3º. Разность множеств А и В.

A/B = {x/x ∈ A и x ∉ B} – т.е. состоит из элементов А, не принадлежащих В.

4º. Симметрическая разность А и В (или кольцевая сумма А и В)

А Ө B = {x/x ∈ A и x ∉ B} ∪ {x/x ∈ В и x ∉ А} или {А\В ∪ В\А}

5º. Дополнение А до универсума

= U\A = {x|x ∈ Uux и x ∉ А}

Произведение множеств

Прямым (декартовым) произведением двух множеств А и В называется множество всех упорядоченных пар, в которой I элемент из множества А, II элемент – из множества В, т.е. А×В = {(а, в)/а Є А ̂в Є В}

Пример: А={2;5;7;9} и В ={2;4;7},

Тогда А×В = {(2,2) ; (2,4) ; (2,7) ; (5,2) ; (5,4) ; (5,7) ; (7,2) ; (7,4) ; (7,7) ; (9,2) ; (9,4); (9,7)}

А∩В={2,7}; А∪В={2,4,5,7,9}; А/В={5,9}; В/А={4}; А Ө В={4,5,9}

Элементы множества А×В называются точками; В паре (х, у) абсцисса – х и ордината – у точки, соответствующей этой паре.

Множество точек плоскости является прямым произведением вида R×R=R 2 , где R–множество действительных чисел.

R 2 называется декартовым квадратом на R.

Элементы теории графов

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Значение слова подмножество

подмножество в словаре кроссвордиста

Энциклопедический словарь, 1998 г.

подмножество

понятие теории множеств. Подмножество множества А - множество В (обозначается В? А), каждый элемент которого принадлежит А. Напр., множество всех четных чисел является подмножеством множества всех целых чисел.

Подмножество

множества А (математическое), любое множество, каждый элемент которого принадлежит А. Например, множество всех чётных чисел является П. множества всех целых чисел. Если к числу множеств причислить «пустое» множество, совсем не содержащее элементов, то, в силу определения, его следует считать П. любого другого множества. Само множество А и пустое множество называются иногда несобственными П., остальные же П. ≈ собственными. См.также Множеств теория.

Википедия

Подмножество

Подмно́жество в теории множеств - это понятие части множества.

Примеры употребления слова подмножество в литературе.

Вы можете также набрать следующую букву, чтобы перейти к подмножеству всех возможных завершений.

Представленный документ МОЖЕТ быть как подмножеством оригинальной версии, так и содержать сведения, которые в ней не были представлены.

Хармсовский ноль как некое множество, включающее в себя бесконечный ряд нулевых подмножеств , -- это мир бесконечности.

Возможность печати подмножества страниц требует наличия фильтра, который может обрабатывать такую ситуацию.

Создание индекса с правилом фрагментации, не совпадающим с правилом фрагментации таблицы, полезно в тех случаях, когда в разных приложениях выборки из таблицы осуществляются на основе разных подмножеств ее атрибутов.

Рекомендуем почитать

Наверх